The notebook-scoped libraries discussed previously require your EMR cluster to have access to a PyPI repository. If you cannot connect your EMR cluster to a repository, use the Python libraries pre-packaged with EMR Notebooks to analyze and visualize your results locally within the notebook. Unlike the notebook-scoped libraries, these local libraries are only available to the Python kernel and are not available to the Spark environment on the cluster. To use these local libraries, export your results from your Spark driver on the cluster to your notebook and use the notebook magic to plot your results locally. Because you are using the notebook and not the cluster to analyze and render your plots, the dataset that you export to the notebook has to be small (recommend less than 100 MB).
Read the whole thing.