Picking A Python IDE

Kevin Jacobs reviews a few Python IDEs from the perspective of a data scientist:

Ladies and gentlemens, this is one of the most perfect IDEs for editing your Python code! At least in my opinion. Jupyter notebook is a web based code editor and can quickly generate visualizations. You can mix up code and text containing no, simple or complex mathematics. One thing I am missing here, is the support for code completion, but there are tons of plugins available so this should be no problem. It is also easy to turn your notebook into a presentation. For collaboration with non-technical teams, this is a great tool.

Conclusion: perfect Python IDE for data science! Less support for code inspection.

Click through for reviews of three IDEs.

Defining Result Sets With ML Services

Dave Mason covers a pain point in SQL Server Machine Learning Services:

The example above is so simple, defining the RESULT SETS poses no problems. But what if the format of the output isn’t known at design time? R (or Python) might take the input data set and add, remove, or change columns conditionally. Further, the input data set might not even be known at design time. How would you define the RESULT SETS at run time?

WITH RESULT SETS needs a MAKE_A_GUESS or FIGURE_IT_OUT option. If there’s some other type of “easy button” for this, I haven’t found it.

It would be nice if the service could the ability to read the data frame columns and use those by default.

Scraping SQL Saturday Statistics

Tomaz Kastrun shows how to use rvest to read the SQL Saturday website and parse schedule details:

I wanted to check a simple query: How many times has a particular topic been presented and from how many different presenters.

Sounds interesting, tackling the problem should not be a problem, just that the end numbers may vary, since there will be some text analysis included.

Read on for the code and some analysis.

Quickly Computing Area Under The Curve

Jean-Francois Puget has a fast method for computing Area Under the Curve in Python:

When the target only takes two values we have a binary classification problem at hand.  Example of binary classification are very common. For instance fraud detection where examples are credit card transactions, features are time, location, amount, merchant id, etc., and target is fraud or not fraud.  Spam detection is also a binary classification where examples are emails, features are the email content as a string of words, and target is spam or not spam.  Without loss of generality we can assume that the target values are 0 and 1, for instance 0 means no fraud or no spam, whiloe 1 means fraud or spam.

For binary classification, predictions are also binary.  Therefore, a prediction is either equal to the target, or is off the mark.  A simple way to evaluate model performance is accuracy: how many predictions are right? For instance, if our test set has 100 examples in it, how many times is the prediction correct?  Accuracy seems a logical way to evaluate performance: a higher accuracy obviously means a better model.  At least this is what people think when they are exposed to the first time to binary classification problems.  Issue is that accuracy can be extremely misleading.

Read Jean-Francois’ explanation and scroll down for the Python sample.

Offline Installation Of SQL Server 2017 ML Services

Jan Mulkens shows how to install SQL Server 2017 Machine Learning Services when your the server hosting SQL Server doesn’t have outbound internet access:

That’s when you remember it… Your server isn’t connected to the internet!
Pretty normal, but in your enthusiasm you completely forgot that SQL Server needs to download some binaries for the R and Python components you so desperately want on your precious machine!

Luckily, the installer comes to your rescue and shows you where to download those binaries it needs.
Turns out however… This link only is for one R component and the installer won’t let you pass to the next screen!

Read on for the answer.

TensorFlow Tutorial

Ashish Bakshi has a TensorFlow tutorial:

As shown in the image above, tensors are just multidimensional arrays, that allows you to represent data having higher dimensions. In general, Deep Learning you deal with high dimensional data sets where dimensions refer to different features present in the data set. In fact, the name “TensorFlow” has been derived from the operations which neural networks perform on tensors. It’s literally a flow of tensors. Since, you have understood what are tensors, let us move ahead in this TensorFlow tutorial and understand – what is TensorFlow?

The sample here is Python, though there is an R library as well.

Creating A Poekr AI In Python

Kevin Jacobs has a fairly simple framework for building poker-playing bots:

The bot uses Monte Carlo simulations running from a given state. Suppose you start with 2 high cards (two Kings for example), then the chances are high that you will win. The Monte Carlo simulation then simulates a given number of games from that point and evaluates which percentage of games you will win given these cards. If another King shows during the flop, then your chance of winning will increase. The Monte Carlo simulation starting at that point, will yield a higher winning probability since you will win more games on average.

If we run the simulations, you can see that the bot based on Monte Carlo simulations outperforms the always calling bot. If you start with a stack of $100,-, you will on average end with a stack of $120,- (when playing against the always-calling bot).

It’s a start, and an opening for more sophisticated logic and analysis.

Python For The DBA: Copying SQL Logins

David Fowler has an example of how DBAs can use Python to do something interesting:

There are plenty of times when you might want to copy your SQL logins (including the SID) from one server to another.  Perhaps you’re running an AG and need to make sure that all users exist on all your secondaries with the correct SID, perhaps you’re migrating servers and need all the logins on your new server.  Whatever the reason, there are a number of different ways in which you can do this but they usually require scripting out on one server and then running the script into another server, or of course there’s Powershell.

The below script will use Python to copy all or specified logins from one server to another, including the password and SID.

Click through for the script.  The main use case for a SQL Server DBA to learn Python as a DBA scripting language would be if you run SQL on Linux—I don’t think Powershell on Linux is far enough developed to handle the full range of DBA tasks.  Otherwise, I’d use Powershell and dbatools.

Sentiment Analysis With Python In SQL Server

Nellie Gustafsson has a quick example of sentiment analysis using SQL Server Machine Learning Services:

You don’t have to be a data scientist to use machine learning in SQL Server. You can use pre-trained models available for usage out of the box to do your analysis. The following example shows you how you quickly get started and do text sentiment analysis.

Before starting to use this model, you need to install it. The installation is quick and instructions for installing the model can be found here: How to install the models on SQL Server

Once you have SQL Server installed with Machine Learning Services, enabled external script execution, and installed the pre-trained model, you can execute the following  script to create a stored procedure that uses Python and the microsoftml function get_sentiment with the pre-trained model to determine the probability of positive sentiment of a text:

Click through to read the whole thing.

Vectorized UDFs For PySpark

Li Jin talks about a performance optimization coming in Apache Spark 2.3:

To enable data scientists to leverage the value of big data, Spark added a Python API in version 0.7, with support for user-defined functions. These user-defined functions operate one-row-at-a-time, and thus suffer from high serialization and invocation overhead. As a result, many data pipelines define UDFs in Java and Scala, and then invoke them from Python.

Vectorized UDFs built on top of Apache Arrow bring you the best of both worlds—the ability to define low-overhead, high performance UDFs entirely in Python.

This looks like a good performance improvement coming to PySpark, bringing it closer to Scala/Java performance with respect to UDFs.

Categories

November 2017
MTWTFSS
« Oct  
 12345
6789101112
13141516171819
20212223242526
27282930