The Confluent employee mines have a new article:
As the adoption of real-time data processing accelerates, the ability to scale stream processing applications to handle high-volume traffic is paramount. Apache Kafka®, the de facto standard for distributed event streaming, provides a powerful and scalable library in Kafka Streams for building such applications.
Scaling a Kafka Streams application effectively involves a multi-faceted approach that encompasses architectural design, configuration tuning, and diligent monitoring. This guide will walk you through the essential strategies and best practices to ensure your Kafka Streams applications can gracefully handle massive throughput.
The post gets into some details around the kinds of limits you’ll hit during scaling, scale-up versus scale-out, and configuration settings to help with that scale.