A Simple Example With Spark And Kafka

Gary Dusbabek has a nice example showing how to build a simple application with Spark and Kafka:

This is a hands-on tutorial that can be followed along by anyone with programming experience. If your programming skills are rusty, or you are technically minded but new to programming, we have done our best to make this tutorial approachable. Still, there are a few prerequisites in terms of knowledge and tools.

The following tools will be used:

  • Git—to manage and clone source code

  • Docker—to run some services in containers

  • Java 8 (Oracle JDK)—programming language and a runtime (execution) environment used by Maven and Scala

  • Maven 3—to compile the code we write

  • Some kind of code editor or IDE—we used the community edition of IntelliJ while creating this tutorial

  • Scala—programming language that uses the Java runtime. All examples are written using Scala 2.12. Note: You do not need to download Scala.

The Hello World of streaming apps is a Twitter client.

Kafka Connect Done Easy

Robin Moffatt shows how to build a simple Kafka Connect flow:

This is pretty cool – the update_ts column is managed automagically by MySQL (other RDBMS have similar functionality), and Kafka Connect’s JDBC connector is using this to pick out new and updated rows from the database.

As a side note here, Kafka Connect tracks the offset of the data that its read using the connect-offsets topic. Even if you delete and recreate the connector, if the connector has the same name it will retain the same offsets previously stored. So if you want to start from scratch, you’ll want to change the connector name – for example, use an incrementing suffix for each test version you work with. You can actually check the content of the connect-offsets topic easily:

This is part 1 of a mini-series, but does show you how to build connections to stream data from MySQL into Kafka and then into a flat file.

Analyzing Twitter Data With Storm In HDInsight

Nischal S shows how to configure an HDInsight cluster to process tweets, followed by loading them into a Power BI dashboard:

When we need to process streams of real-time data, Storm is a great contender. Examples of streaming data are the number of consumer clicks and navigations on a website, IIS or user logs, IoT data, and social network information. In all these scenarios, we use real-time data processing. Apache Storm can process real-time unbounded streams of data.

The term “unbounded” defines streams of data with no start or end. Here, the processing of data is continuous and in real-time. Twitter is a good example. Twitter data is continuous, has no start or end time, and is provided in real-time by millions of Twitter users around the world.

Storm wouldn’t rank in my top three technologies for doing this, but it certainly does the job.

Unit Testing Kafka Streams

Anuj Saxena shows us how to build mocks for streams in Kafka Streams:

Here, we are using Kafka streams in our applications. We are done with the implementation but again, the most important thing left is testing. This blog is about how to test the application we have created. For this, I’ll be taking the sample app I created in my previous blog for both high-level DSL and low-level processor API.

Traditionally, we test our Kafka application with an integration test for which we need to create a ZooKeeper and a real Kafka broker. After that, we need a mock producer and mock consumer for our app to produce the inputs and receive the outputs. That makes it such a big hassle just to test our app. Testing it for real scenarios and for the actual integration test, this is needed without a doubt.

Click through for an example.

Stream Analytics Into Power BI

Rolf Tesmer shows off how to use Azure Stream Analytics to push data in real time via the Power BI API into your Power BI dashboard:

You can push data to the Power BI streaming dataset API in a few ways… but they generally boil down to these 3 options

  1. Directly call the API from code
  2. Directly call the API from an Azure Logic App
  3. Use Azure Stream Analytics to push data into the API

This blog post extends on my previous post – and thus I will be leveraging Option #3 above.

Definitely worth checking out if you are interested in real-time Power BI dashboards.

Kafka Streams Basics

Anuj Saxena walks through Kafka Streams and provides a quick example:

The features provided by Kafka Streams:

  • Highly scalable, elastic, distributed, and fault-tolerant application.

  • Stateful and stateless processing.

  • Event-time processing with windowing, joins, and aggregations.

  • We can use the already-defined most common transformation operation using Kafka Streams DSL or the lower-level processor API, which allow us to define and connect custom processors.

  • Low barrier to entry, which means it does not take much configuration and setup to run a small scale trial of stream processing; the rest depends on your use case.

  • No separate cluster requirements for processing (integrated with Kafka).

  • Employs one-record-at-a-time processing to achieve millisecond processing latency, and supports event-time based windowing operations with the late arrival of records.

  • Supports Kafka Connect to connect to different applications and databases.

Read on for more details as well as a sample script to get started.

Streaming ETL Using CDC And Event Hub

Rolf Tesmer combines Change Data Capture and Event Hubs to build a streaming ETL solution:

The solution picks up the SQL data changes from the CDC Change Tracking system tables, creates JSON messages from the change rows, and then posts the message to an Azure Event Hub.  Once landed in the Event Hub an Azure Stream Analytics (ASA) Job distributes the changes into the multiple outputs.

What I found pretty cool was that I could transmit SQL delta changes from source to target in as little as 5 seconds end to end!

There are a bunch of steps, but the end result is worth it.

Real-Time Streaming ETL With Kafka Streams

Yeva Byzek has a tutorial using Kafka and Kafka Streams to perform real-time ETL:

Let’s consider an application that does some real-time stateful stream processing with the Kafka Streams API. We’ll run through a specific example of the end-to-end reference architecture and show you how to:

  • Run a Kafka source connector to read data from another system (a SQLite3 database), then modify the data in-flight using Single Message Transforms (SMTs) before writing it to the Kafka cluster

  • Process and enrich the data from a Java application using the Kafka Streams API (e.g. count and sum)

  • Run a Kafka sink connector to write data from the Kafka cluster to another system (AWS S3)

Read the whole thing.

Updates In Apache Kafka

Yeva Byzek announces that Apache Kafka 0.11.0.0 is shipping soon:

We are very excited for the GA for Kafka release 0.11.0.0 which is just days away. This release is bringing many new features as described in the previous Log Compaction blog post.

The most notable new feature is Exactly Once Semantics (EOS).  Kafka’s EOS capabilities provide more stringent idempotent producer semantics with exactly once, in-order delivery per partition, and stronger transactional guarantees with atomic writes across multiple partitions. Together, these strong semantics make writing applications easier and expand Kafka’s addressable use cases. You can learn more about EOS in the online talk on June 29, 2017.

“Exactly once,” if done right, would be crazy—there’s a reason most brokers are either “at least once” or “best effort.”

Spark Streaming Vs Kafka Streams

Mahesh Chand Kandpal contrasts Kafka Streams with Spark Streaming:

The low latency and an easy-to-use event time support also apply to Kafka Streams. It is a rather focused library, and it’s very well-suited for certain types of tasks. That’s also why some of its design can be so optimized for how Kafka works. You don’t need to set up any kind of special Kafka Streams cluster, and there is no cluster manager. And if you need to do a simple Kafka topic-to-topic transformation, count elements by key, enrich a stream with data from another topic, or run an aggregation or only real-time processing — Kafka Streams is for you.

If event time is not relevant and latencies in the seconds range are acceptable, Spark is the first choice. It is stable and almost any type of system can be easily integrated. In addition it comes with every Hadoop distribution. Furthermore, the code used for batch applications can also be used for the streaming applications as the API is the same.

Read on for more analysis.

Categories

August 2017
MTWTFSS
« Jul  
 123456
78910111213
14151617181920
21222324252627
28293031