Building A Neural Network In R With Keras

Pablo Casas walks us through Keras on R:

One of the key points in Deep Learning is to understand the dimensions of the vector, matrices and/or arrays that the model needs. I found that these are the types supported by Keras.

In Python’s words, it is the shape of the array.

To do a binary classification task, we are going to create a one-hot vector. It works the same way for more than 2 classes.

For instance:

  • The value 1 will be the vector [0,1]
  • The value 0 will be the vector [1,0]

Keras provides the to_categorical function to achieve this goal.

This example doesn’t include using CUDA, but the data sizes are small enough that it doesn’t matter much.  H/T R-Bloggers

Related Posts

Combining Plots In R With cowplot

Abdul Majed Raja shows how to use the cowplot library in R to merge together independent plots into a single image: The way it works in cowplot is that, we have assign our individual ggplot-plots as an R object (which is by default of type ggplot). These objects are finally used by cowplot to produce […]

Read More

Where Machine Learning And Econometrics Collide

Dave Giles shares some thoughts on how machine learning and econometrics relate: What is Machine Learning (ML), and how does it differ from Statistics (and hence, implicitly, from Econometrics)? Those are big questions, but I think that they’re ones that econometricians should be thinking about. And if I were starting out in Econometrics today, I’d […]

Read More

Categories

September 2018
MTWTFSS
« Aug Oct »
 12
3456789
10111213141516
17181920212223
24252627282930