Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC):

The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated AUC.
In the figure below, the cases are presented on the left and the controls on the right.
Since we have only 12 patients, we can easily visualize all 32 possible combinations of one case and one control. (Rcode below)

Expanding from this easy-to-follow example, Colman walks us through some of the statistical tests involved.  Check it out.

Related Posts

Reporting On Unit Tests In R With covrpage

Maelle Salmon recaps Locke Data’s involvement with the covrpage package: To read more about getting started with covrpage in your own package in a few lines of code only, we recommend checking out the “get started” vignette. It explains more how to setup the Travis deploy, mentions which functions power the covrpage report, and gives more motivation for using covrpage.And to learn […]

Read More

The Intuition Behind Principal Component Analysis

Holger von Jouanne-Diedrich gives us an intuition behind how principal component analysis (PCA) works: Principal component analysis (PCA) is a dimension-reduction method that can be used to reduce a large set of (often correlated) variables into a smaller set of (uncorrelated) variables, called principal components, which still contain most of the information.PCA is a concept […]

Read More

Categories

September 2018
MTWTFSS
« Aug Oct »
 12
3456789
10111213141516
17181920212223
24252627282930