Interpreting The Area Under The Receiver Operating Characteristic Curve

Roos Colman explains what a Receiver Operating Characteristic (ROC) curve is and how we interpret the Area Under the Curve (AUC):

The AUC can be defined as “The probability that a randomly selected case will have a higher test result than a randomly selected control”. Let’s use this definition to calculate and visualize the estimated AUC.
In the figure below, the cases are presented on the left and the controls on the right.
Since we have only 12 patients, we can easily visualize all 32 possible combinations of one case and one control. (Rcode below)

Expanding from this easy-to-follow example, Colman walks us through some of the statistical tests involved.  Check it out.

Related Posts

Interactive ggplot Plots with plotly

Laura Ellis takes us through ggplotly: As someone very interested in storytelling, ggplot2 is easily my data visualization tool of choice. It is like the Swiss army knife for data visualization. One of my favorite features is the ability to pack a graph chock-full of dimensions. This ability is incredibly handy during the data exploration […]

Read More

Goodbye, gather and spread; Hello pivot_long and pivot_wide

John Mount covers a change in tidyr which mimics Mount and Nina Zumel’s pivot_to_rowrecs and unpivot_to_blocks functions in the cdata package: If you want to work in the above way we suggest giving our cdatapackage a try. We named the functions pivot_to_rowrecs and unpivot_to_blocks. The idea was: by emphasizing the record structure one might eventually internalize what the transforms […]

Read More

Categories

September 2018
MTWTFSS
« Aug Oct »
 12
3456789
10111213141516
17181920212223
24252627282930