Press "Enter" to skip to content

Category: Machine Learning

Multivariate Time Series Anomaly Detection in Azure

Louise Han announces an update to the anomaly detection service:

We are excited to announce that we are adding more powerful capabilities in Microsoft Azure Multivariate Anomaly Detector (MVAD) today. In the latest version(v1.1-preview.1) of this API, we implemented a new , in a synchronous manner, which means you could get the anomaly detection results immediately once you call this API. This synchronous inference API is a substantial change compared with previous inference process and will be more intuitive and easier-to-use.

Also, we added a new field named ‘interpretation‘  to give more explanations on an anomaly, like which variables have huge correlation changes and cause the anomaly. These updates will support you to better leverage MVAD and get more useful information to analyze and take actions.

Click through for some more details.

Comments closed

Using the Azure Form Recognizer

Cem Ayberkin shows off the Azure Form Recognizer:

Shopping malls are facing strong competition and effective loyalty programs boost customer retention. The primary goal of the loyalty scheme is to promote loyalty at the mall, increase footfall whilst understanding shopping habits. With large number of stores and various receipt formats in a mall, the process of manual checking and verification of the data submitted in place did enable rewards to be issued, but proved slow, expensive, inconsistent, and non-scalable. It did not include the valuable line item/product information the mall needed to understand the shopping habits. Therefore, one of the largest shopping malls used Azure Form Recognizer automating receipt scanning and data extraction and feeding the data as rewards points into the customer’s loyalty program, which greatly improved customer shopping experience.

I was pleasantly surprised with how the Form Recognizer works. It’s not perfect but it is useful.

Comments closed

Scheduling Azure ML Compute Instance Start-Up and Shut-Down

I have a post correcting a statement I made before:

The single biggest problem I have with compute instances is that there is no auto-stop functionality to them. This is really frustrating because you’re paying for that virtual machine like you would any other, so if you forget to turn it off when you go home for the weekend, it’ll cost you. I wish there were a built-in option to shut off a compute instance after a certain amount of inactivity. Instead, you’ll need to start and stop them manually.

It turns out that you can and so I wanted to write a post to correct the record.

Click through to see how you can do this. You can bet that I’ve got it enabled now.

Comments closed

MLOps on Databricks

Piotr Majer and Michael Shtelma complete a series on MLOps on Databricks:

This is the second part of a two-part series of blog posts that show an end-to-end MLOps framework on Databricks, which is based on Notebooks. In the first post, we presented a complete CI/CD framework on Databricks with notebooks. The approach is based on the Azure DevOps ecosystem for the Continuous Integration (CI) part and Repos API for the Continuous Delivery (CD). This post extends the presented CI/CD framework with machine learning providing a complete ML Ops solution.

Check it out.

Comments closed

Azure ML Deployments and Endpoints

I continue a series on low-code machine learning with Azure ML:

The first thing we need to do is create an inference pipeline. Inference pipelines differ from training pipelines in that they won’t use the training dataset, but they will accept user input and provide a scored response. There are two types of inference pipeline: real-time and batch. Real-time inference pipelines are intended for small-set work. We’ll host a service on some compute resource in Azure and people will make REST API calls to our service, sending in a request with a few items to score and we send back classification results.

By contrast, a batch pipeline is what you’d use if you have a nightly job with tens of millions of items to score. In that case, the typical pattern is to have a service listening for changes in a storage account and, some time after people drop new files into the proper folder, the batch inference process will pick up these files, score the results, and write those results out to a destination location.

This post is all about inference pipelines. The next post will be all about batch pipelines.

Comments closed

Training a Model in the Azure ML Designer

I continue a series on low-code machine learning in Azure ML:

Machine learning is a lot like an action film from the 1980s: we see early on that there’s a problem, we train in a cool montage with upbeat rock music, and then we come back to the problem and defeat it with car chases and bazookas and quippy one-liners. Well, maybe that simile got away from me a little bit, but I think I’ll stick with it.

What we’ll do in this post is cover the process of training a simple model using the Azure ML designer. I won’t deviate too far from the “classic” Azure ML script, which involves using the Designer to train a model and then deploy an endpoint for consumption. And away we go!

Sometimes, when a model is running, I say to it, “I have to remind you Sully, this is my weak arm!”

Comments closed

Trying Automated ML in Azure ML

I continue a series on low-code machine learning with Azure ML:

Automated Machine Learning (AutoML) provides two distinct benefits. The first benefit is the one that AutoML providers tend to tout: you don’t need (much) machine learning experience to use them. According to the marketing, AutoML does all of the work and you sit back and enjoy the fruits of its labor.

I am nowhere near sold on this use case for AutoML. Yes, you can get answers in a few clicks, but to get good answers, you need a lot more knowledge of data processing and statistics than they let on. Feeding in garbage data will get you mediocre results.

Click through for the second benefit, which I think applies much better. Also for a step-by-step demonstration of how AutoML works.

Comments closed

Data and Compute in Azure ML

I continue a series on low-code machine learning with Azure ML:

Once you have a datastore, you’re going to want to create at least one dataset. Datasets are versioned collections of data in some datastore. The Azure ML model is quite file-centric, and this concept makes the most sense with something like a data lake, where we have different extracts of data over different timeframes. Perhaps we get an extract of customer behavior up to the year 2018, and then the next year we get customer behavior up to 2019, and so on. The idea here is that you can use the latest training data for your models, but if you want to see how current models would have stacked up against older data, the opportunity is there.

Once you have data and compute, the world is your oyster. Or something like that.

Comments closed

Apache Flink ML 2.0.0

Dong Lin and Yun Gao make an announcement:

The Apache Flink community is excited to announce the release of Flink ML 2.0.0! Flink ML is a library that provides APIs and infrastructure for building stream-batch unified machine learning algorithms, that can be easy-to-use and performant with (near-) real-time latency.

This release involves a major refactor of the earlier Flink ML library and introduces major features that extend the Flink ML API and the iteration runtime, such as supporting stages with multi-input multi-output, graph-based stage composition, and a new stream-batch unified iteration library. Moreover, we added five algorithm implementations in this release, which is the start of a long-term initiative to provide a large number of off-the-shelf algorithms in Flink ML with state-of-the-art performance.

Congratulations to everybody who contributed to the project; it’s a big milestone.

Comments closed