Press "Enter" to skip to content

Sentiment Analysis with Python

Sanil Mhatre performs a bit of sentiment analysis:

Previous articles in this series have focused on platforms like Azure Cognitive Services and Oracle Text features to perform the core tasks of Natural Language Processing (NLP) and Sentiment Analysis. These easy-to-use platforms allow users to quickly analyze their text data with easy-to-use pre-built models. Potential drawbacks of this approach include lack of flexibility to customize models, data locality & security concerns, subscription fees, and service availability of the cloud platform. Programming languages like Python and R are convenient when you need to build your models for Natural Language Processing and keep your code as well as data contained within your data centers. This article explains how to do sentiment analysis using Python.

Python is a versatile and modern general-purpose programming language that is powerful, fast, and easy to learn. Python runs on interpreters, making it compatible with multiple platforms, and is widely used in applications for web platforms, graphical interfaces, data science, and machine learning. Python is increasingly gaining popularity in data analysis and is one of the most widely used languages for data science. You can learn more about Python from the official Python Software Foundation website.

Click through to see what’s available in the NLP world for Python. The short version is “a lot.”