Press "Enter" to skip to content

Category: ETL / ELT

Azure Data Factory Templates and Source Control

Cathrine Wilhelmsen continues a series on Azure Data Factory. First up is source control:

And yeah, I usually recommend that you set up source control early in your project, and not on day 18… However, it does require some external configuration, and in this series I wanted to get through the Azure Data Factory basics first. But by now, you should know enough to decide whether or not to commit to Azure Data Factory as your data integration tool of choice.

Next up is using the template gallery:

You can also create custom templates and share them with your team – or share them externally with others. Custom templates are saved in your code repository and will show up in the template gallery for you and your team. If you want to share them externally, you can easily export them, so others can import them in their Azure Data Factory.

Let’s take a look!

Read on to learn more.

Comments closed

DBLog: CDC for MySQL and Postgres

Andreas Andreakis and Ioannis Papapanagiotou announce a new change data capture tool for open source databases:

In databases like MySQL and PostgreSQL, transaction logs are the source of CDC events. As transaction logs typically have limited retention, they aren’t guaranteed to contain the full history of changes. Therefore, dumps are needed to capture the full state of a source. There are several open source CDC projects, often using the same underlying libraries, database APIs, and protocols. Nonetheless, we found a number of limitations that could not satisfy our requirements e.g. stalling the processing of log events until a dump is complete, missing ability to trigger dumps on demand, or implementations that block write traffic by using table locks.

This motivated the development of DBLog, which offers log and dump processing under a generic framework. In order to be supported, a database is required to fulfill a set of features that are commonly available in systems like MySQL, PostgreSQL, MariaDB, and others.

It looks like DBLog is not open source just yet, but that’s forthcoming.

Comments closed

Recommendations for Implementing Azure Data Factory

Paul Andrew has a nice set of recommendations you should follow when configuring Azure Data Factory:

Building on our understanding of generic datasets, a good Data Factory should include (where possible) generic pipelines, these are driven from metadata to simplify (as a minimum) data ingestion operations. Typically I use an Azure SQLDB to house my metadata with stored procedures that get called via Lookup activities to return everything a pipeline needs to know.

This metadata driven approach means deployments to Data Factory for new data sources are greatly reduced and only adding new values to a database table is required. The pipeline itself doesn’t need to be complicated. Copying CSV files from a local file server to Data Lake Storage could be done with just three activities, shown below.

There are several good recommendations here; read the whole thing.

Comments closed

Data Copy & Package Execution in ADF

Cathrine Wilhelmsen continues a series on Azure Data Factory. First, we get to see how to copy data from on-prem SQL Servers:

In the previous post, we looked at the three different types of integration runtimes. In this post, we will first create a self-hosted integration runtime. Then, we will create a new linked service and dataset using the self-hosted integration runtime. Finally, we will look at some common techniques and design patterns for copying data from and into an on-premises SQL Server.

And when I say “on-premises”, I really mean “in a private network”. It can either be a SQL Server on-premises on a physical server, or “on-premises” in a virtual machine.

Then, we learn how to run SSIS packages in Azure Data Factory:

Two posts ago, we looked at the three types of integration runtimes and created an Azure integration runtime. In the previous post, we created a self-hosted integration runtime for copying SQL Server data. In this post, we will complete the integration runtime part of the series. We will look at what SSIS Lift and Shift is, how to create an Azure-SSIS integration runtime, and how you can start executing SSIS packages in Azure Data Factory.

I’m going to guess that the next post will be all about the third integration runtime.

Comments closed

More with Azure Data Factory

Cathrine Wilhelmsen continues a series on Azure Data Factory. Since we left off, Cathrine has three new posts. First, a look at how we monitor Azure Data Factory pipelines:

In the previous post, we looked at the three different trigger types, as well as how to trigger pipelines on-demand. In this post, we will look at what happens after that. How does monitoring work in Azure Data Factory?

Now, if we want to look at monitoring, we probably need something to monitor first. I mean, I could show you a blank dashboard, but I kind of already did that, and that wasn’t really interesting at all 🤔 So! In the previous post, I created a schedule trigger that runs hourly, added it to my orchestration pipeline, and published it.

Second, using annotations to customize views:

Annotations are additional, informative tags that you can add to specific factory resources: pipelinesdatasetslinked services, and triggers. By adding annotations, you can easily filter and search for specific factory resources.

You need to figure out what kind of annotations make sense to you. Maybe you want to filter on the different logical steps of your solution, so you add the tags extract and transform? Perhaps ingest and prepare? Or maybe you want to tag resources with a business unit or a project name? It’s entirely up to you. All I recommend is that you’re consistent 🙂

That’s a problem for me—the only thing I’m consistent about is inconsistency. Third, Cathrine introduces the different runtimes available to us:

An integration runtime (IR) specifies the compute infrastructure an activity runs on or gets dispatched from. It has access to resources in either public networks, or in public and private networks.

Or, in Cathrine-speak, using less precise words: An integration runtime specifies what kind of hardware is used to execute activities, where this hardware is physically located, who owns and maintains the hardware, and which data stores and services the hardware can connect to.

There’s a lot of good material in each of these three posts.

Comments closed

Azure Data Factory Triggers

Cathrine Wilhelmsen continues a series on Azure Data Factory by looking at triggers:

One important thing to note is that all times are in UTC. And since UTC does not observe daylight saving time… Well, let’s just say that if you need to execute pipelines during the workday and you have business users waiting for data, you may want to plan some trigger maintenance on the days when you fall back or spring forward. I know. Ugh 🙂 I’m hoping for better timezone support in the future 🤞🏻

Schedule triggers and pipelines have a many-to-many relationship. That means that one schedule trigger can execute many pipelines, and one pipeline can be executed by many schedule triggers.

Time-based triggers aren’t the only options, however—Cathrine also looks at the other three possibilities.

Comments closed

Debugging Azure Data Factory Pipelines

Cathrine Wilhelmsen shows us how to debug Azure Data Factory pipelines:

You debug a pipeline by clicking the debug button:

Tadaaa! Blog post done? 😀

I joke, I joke, I joke. Debugging pipelines is a one-click operation, but there are a few more things to be aware of. In the rest of this post, we will look at what happens when you debug a pipeline, how to see the debugging output, and how to set breakpoints.

Turns out there’s more to it than clicking a button.

Comments closed

Orchestrating ADF Pipelines

Cathrine Wilhelmsen continues a series on Azure Data Factory:

The other way to build this solution is by creating an orchestration pipeline with two execute pipeline activities. This gives us a little more flexibility than having a single pipeline, because we can execute each pipeline separately if we want to.

Let’s start by creating a new pipeline and adding two execute pipeline activities to it. In the activity settings, select the pipelines to execute, and check wait on completion:

Read on for the demonstration.

Comments closed

Azure Data Factory Data Flows

Cathrine Wilhelmsen continues a series on Azure Data Factory:

So far in this Azure Data Factory series, we have looked at copying data. We have created pipelinescopy data activitiesdatasets, and linked services. In this post, we will peek at the second part of the data integration story: using data flows for transforming data.

But first, I need to make a confession. And it’s slightly embarrassing…

I don’t use data flows enough to keep up with all the changes and new features

To be fair to Cathrine, this is a rapidly-changing part of ADF.

Comments closed

Azure Data Factory Continued

Cathrine Wilhelmsen continues a series on Azure Data Factory. Catching up from the last time around, we first see the Copy Data activity:

You can copy data to and from more than 80 Software-as-a-Service (SaaS) applications (such as Dynamics 365 and Salesforce), on-premises data stores (such as SQL Server and Oracle), and cloud data stores (such as Azure SQL Database and Amazon S3). During copying, you can define and map columns implicitly or explicitly, convert file formats, and even zip and unzip files – all in one task.

Yeah. It’s powerful 🙂 But how does it really work?

Then Cathrine hits datasets:

But… please, please, please don’t use “source” or “destination” or “sink” or “input” or “output” or anything like that in your dataset names. It makes sense when you have one pipeline with one copy data activity, but as soon as you start building out your solution, it can get messy. Because what if you realize you want to use the original destination dataset as a source dataset in another copy data activity? Yeah… 🙂

So! Let’s rename the datasets.

After that, it’s on to linked services:

Azure Key Vault is a service for storing and managing secrets (like connection strings, passwords, and keys) in one central location. By storing secrets in Azure Key Vault, you don’t have to expose any connection details inside Azure Data Factory. You can connect to “the application database” without directly seeing the server, database name, or credentials used.

Cathrine is rolling with this series and it’s been great so far.

Comments closed