Reza Rad hops in the Delorean:
Data changes throughout time, especially in the world of BI and data warehousing systems; the data gets updated through ETL processes frequently. This means that the data you see in the warehouse today might differ from yesterday and the day before, and so on. Some parts of this data can be retrieved on a timely basis. You can, for example, query the sales amount from the sales table where the date has been the 2nd of April. That would give you the sales amount for the 2nd of April, even if you are querying it on the 23rd of May.
However, what if some of the sales transactions on the 2nd of April got updated? The sales amount you see would likely be the updated amount, but not the original amount. It is sometimes useful to be able to see what was that original amount, or in other words, travel in time and see what that value was.
Click through for a combination video and article. The syntax isn’t quite the same as with temporal tables in SQL Server, though it’s close enough to follow along if that’s your relevant experience.