Column-Level Security In Azure SQL Data Warehouse

Kavitha Jonnakuti announces a new feature for Azure SQL Data Warehouse:

Access to the table columns can be controlled based on the user’s execution context or their group membership with the standard GRANT T-SQL statement. To secure your data, you simply define a security policy via the GRANT statement to your table columns. For example, if you would like to limit access to PII data in your customers table, you can simply GRANT SELECT permissions on specific columns to the ContractEmp role:

GRANT SELECT ON dbo.Customers (CustomerId, FirstName, LastName) TO ContractEmp;

This capability is available now in all Azure regions with no additional charge.

This has been in regular SQL Server for a long time, so it’s good to see it make its way into Azure SQL Data Warehouse, and in a manner which doesn’t involve creating user-defined functions for predicates like Row-Level Security.

Auditing Options With Azure SQL Data Warehouse

Janusz Rokicki explores what is available in Azure SQL Data Warehouse when it comes to auditing:

Auditing is disabled by default and the UI experience depends on the region to which the logical server is deployed. For instance, in UK South, the portal offers no options to manage auditing:

In North Europe, the portal allows Table Auditing (table-storage based) to be enabled on the SQL Data Warehouse scope, but it isn’t possible to enable Blob Auditing:

On top of that, Blob Auditing behaves differently when enabled on a logical server level in different regions. In locations that support Table Auditing, turning on Blob Auditing automatically enables it in all databases, including SQL Data Warehouses—and that’s expected. In other regions, Blob Auditing is not automatically enabled and has to be turned on programmatically by calling ARM REST API.

I imagine the plan is to support this across the board but it’s rolling out region by region.

User-Defined Restore Points In Azure SQL DW

Kevin Ngo announces a new feature in Azure SQL Data Warehouse:

Previously, SQL DW supported only automated snapshots guaranteeing an eight-hour recovery point objective (RPO). While this snapshot policy provided high levels of protection, customers asked for more control over restore points to enable more efficient data warehouse management capabilities leading to quicker times of recovery in the event of any workload interruptions or user errors.

Now, with user-defined restore points, in addition to the automated snapshots, you can initiate snapshots before and after significant operations on your data warehouse. With more granular restore points, you ensure that each restore point is logically consistent and limit the impact and reduce recovery time of restoring the data warehouse should this be needed. User-defined restore points can also be labeled so they are easy to identify afterwards.

Creating a user-defined restore point is a one-liner in Powershell, and it’s something you could do after each warehouse load, for example.

The Shuffling Operator And Azure SQL DW

Arun Sirpal is ready to deal:

For the purposes of this post the TSQL shown is elementary (don’t be surprised by that), the point is really about SHUFFLE. So, I select the estimated plan for the following code.

SELECT SOD.[SalesOrderID],SOD.[ProductID], SOH.[TotalDue]
FROM [SalesLT].[SalesOrderDetail] SOD
JOIN [SalesLT].[SalesOrderHeader] SOH ON
SOH.[SalesOrderID] = SOD.[SalesOrderID]
WHERE SOH.[TotalDue] > 1000

Shuffle me once, why not shuffle me twice. If you REALLY want to see the EXPLAIN command output, then it looks like this snippet below.

The DSQL operation clearly states SHUFFLE_MOVE. Why am I getting this? What does it mean?

Shuffling data isn’t the worst thing in the world, but it is a fairly expensive operation all things considered.  Ideally, your warehouse architecture limits the number of shuffle operations, but considering that you can only hash on one key, sometimes it’s inevitable.

Spatial Workaround In Azure SQL Data Warehouse

Rolf Tesmer has you covered if you want to perform spatial queries against data in Azure SQL Data Warehouse:

Recently we had a requirement to perform SQL Spatial functions on data that was stored in Azure SQL DW.  Seems simple enough as spatial has been in SQL for many years, but unfortunately, SQL Spatial functions are not natively supported in Azure SQL DW (yet)!

If interested – this is the link to the Azure Feedback feature request to make this available in Azure SQL DW – https://feedback.azure.com/forums/307516-sql-data-warehouse/suggestions/10508991-support-for-spatial-data-type

AND SO — to use spatial data in Azure SQL DW we need to look at alternative methods.  Luckily a recent new feature in Azure SQL DB  in the form of Elastic Query to Azure SQL DW now gives us the ability to perform these SQL Spatial functions on data within Azure SQL DW via a very simple method!

Check out that Azure Feedback item if you’d like to see native spatial support rather than using elastic query.  In the meantime, click through to see Rolf’s workaround.

Temp Tables In Redshift

Derik Hammer has some notes on temporary tables in Amazon Redshift:

One difference between regular tables and temporary tables is how they are typically used. Temporary tables are session scoped which means that adding them into a process or report will probably cause them to be created multiple times. Temporary tables might be very similar to regular tables but most regular tables are not re-written into, every time they are queried.

The disk writes involved in populating the temporary table might be more expensive than the reads would be if you were to modify your query to include the logic into one, larger, query. The frequency of the report or process will be a factor into how much of a performance hit you get by using the temporary tables. If you are using temporary tables to make debugging a procedure easier or to enhance readability, make sure you understand the IO cost of performing writes and then reading that data back into a subsequent query.

Read on for more.

Virtualize Data Or Move It?

James Serra contrasts data virtualization with traditional ETL moving data to a warehouse:

Data virtualization integrates data from disparate sources, locations and formats, without replicating or moving the data, to create a single “virtual” data layer that delivers unified data services to support multiple applications and users.

Data movement is the process of extracting data from source systems and bringing it into the data warehouse and is commonly called ETL, which stands for extraction, transformation, and loading.

If you are building a data warehouse, should you move all the source data into the data warehouse, or should you create a virtualization layer on top of the source data and keep it where it is?

Read on for James’s thoughts.

The Premise Of Cloud Data Warehousing

Derik Hammer explains how cloud data warehouses differ from their on-prem cousins:

Given the data processing needs of a data warehouse, they tend to be implemented on massively parallel processing (MPP) systems. The MPP architecture replies upon a shared nothing concept for distributing data across various slices. Compute nodes are layered on top of the storage and processes queries for data residing in its local slice. The control node is responsible for taking a query and dividing it up into smaller queries to be run in parallel on the compute nodes.

Read the whole thing.

Row Counts From Statistics In Azure DW

Derik Hammer has a script to estimate row counts in an Azure SQL Data Warehouse table:

Azure SQL Data Warehouse is a massively parallel processing (MPP) architecture designed for large-scale data warehouses. An MPP system creates logical / physical slices of the data. In SQL Data Warehouse’s case, the data has 60 logical slices, at all performance tiers. This means that a single table can have up to 60 different object_ids. This is why, in SQL Data Warehouse, there is the concept of physical and logical object_ids along with physical names.

Below is a query for finding row counts of tables in SQL Data Warehouse which accounts for the differences in architecture between my earlier script, written for SQL Server, and SQL Data Warehouse.

Click through for the script.

The Need For Multiple Warehouse Architectures

James Serra argues in favor of a data lake approach and a traditional data warehouse:

I think the ultimate question is: Can all the benefits of a traditional relational data warehouse be implemented inside of a Hadoop data lake with interactive querying via Hive LLAP or Spark SQL, or should I use both a data lake and a relational data warehouse in my big data solution?  The short answer is you should use both.  The rest of this post will dig into the reasons why.

I touched on this ultimate question in a blog that is now over a few years old at Hadoop and Data Warehouses so this is a good time to provide an update.  I also touched on this topic in my blogs Use cases of various products for a big data cloud solutionData lake detailsWhy use a data lake?and What is a data lake? and my presentation Big data architectures and the data lake.  

Read on for James’s argument, which is good.  My argument is summed up as follows:  the purpose of a data warehouse is to solve known business problems—that is, to help build reports that people on the business side need based on established requirements.  The purpose of a data lake is to hold all kinds of data and curate it for when people come looking for something they didn’t know they needed.

Categories

July 2018
MTWTFSS
« Jun  
 1
2345678
9101112131415
16171819202122
23242526272829
3031