Spark Streaming On Azure Databricks

Tristan Robinson shows us how to run Spark Streaming within Azure Databricks:

Real-time stream processing is becoming more prevalent on modern day data platforms, and with a myriad of processing technologies out there, where do you begin? Stream processing involves the consumption of messages from either queue/files, doing some processing in the middle (querying, filtering, aggregation) and then forwarding the result to a sink – all with a minimal latency. This is in direct contrast to batch processing which usually occurs on an hourly or daily basis. Often is this the case, both of these will need to be combined to create a new data set.

In terms of options for real-time stream processing on Azure you have the following:

  • Azure Stream Analytics

  • Spark Streaming / Storm on HDInsight

  • Spark Streaming on Databricks

  • Azure Functions

Click through for more.

Related Posts

Working With The Databricks API Via Powershell

Gerhard Brueckl has a Powershell module for interacting with Databricks, either Azure or AWS: As most of our deployments use PowerShell I wrote some cmdlets to easily work with the Databricks API in my scripts. These included managing clusters (create, start, stop, …), deploying content/notebooks, adding secrets, executing jobs/notebooks, etc. After some time I ended […]

Read More

Migrating A Database To Managed Instances

Frank Gill shows how to migrate a database from on-premises to an Azure SQL Managed Instance: If you have run through my last Managed Instance blog post, you have a Managed Instance at your disposal.  The PowerShell script for creating the network requirements also contains steps to create an Azure VM in a different subnet in […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031