Spark Streaming On Azure Databricks

Tristan Robinson shows us how to run Spark Streaming within Azure Databricks:

Real-time stream processing is becoming more prevalent on modern day data platforms, and with a myriad of processing technologies out there, where do you begin? Stream processing involves the consumption of messages from either queue/files, doing some processing in the middle (querying, filtering, aggregation) and then forwarding the result to a sink – all with a minimal latency. This is in direct contrast to batch processing which usually occurs on an hourly or daily basis. Often is this the case, both of these will need to be combined to create a new data set.

In terms of options for real-time stream processing on Azure you have the following:

  • Azure Stream Analytics

  • Spark Streaming / Storm on HDInsight

  • Spark Streaming on Databricks

  • Azure Functions

Click through for more.

Related Posts

Databricks Runtime 5.2 Released

Nakul Jamadagni announces Databricks Runtime 5.2: Delta Time TravelTime Travel, released as an Experimental feature, adds the ability to query a snapshot of a table using a timestamp string or a version, using SQL syntax as well as DataFrameReader options for timestamp expressions.Sample codeSELECT count() FROM events TIMESTAMP AS OF timestamp_expressionSELECT count() FROM events VERSION AS OF version Time travel looks a bit like temporal tables in SQL Server.

Read More

Kafka And The Differing Aims Of Data Professionals

Kai Waehner argues that there is an impedence mismatch between data engineers, data scientists, and ML production engineers: Data scientists love Python, period. Therefore, the majority of machine learning/deep learning frameworks focus on Python APIs. Both the stablest and most cutting edge APIs, as well as the majority of examples and tutorials use Python APIs. […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031