HDP 3.0 Updates To Hive And Druid

Nishant Bangarwa has some updates to Apache Druid in HDP 3.0:

There are numerous improvements that went into HDP 3.0 and the performance improvements shown are an aggregate result of all of them. Here are some of the more noteworthy improvements related to Druid-Hive integration :

    1. Druid Expressions Support – HIVE-18893CALCITE-2170   added support for Druid expressions in Hive. In HDP 3.0, Hive can push the computation of SQL expressions as part of a Druid query and they can be evaluated by Druid.

    2. Use of Scan Query instead of Select Query – In HDP 3.0 we use Druid Scan query instead of Select Query. Scan Query is a streaming version of Select Query which returns the results in a compact streaming format. Scan query also does not need all the results to be retained in memory before they can be returned to Hive. This improves the memory usage of the historical nodes too.

    3. GroupBy Query Improvements – Many optimizations are done in order to address the performance of GroupBy queries on Druid side. Main ones are –

      1. #4660 Parallel sort for ConcurrentGrouper
      2. #4576 Array-based aggregation for GroupBy query
      3. #4668 Add IntGrouper to avoid unnecessary boxing/unboxing in array-based aggregation
      4. #4704 Parallel merging of intermediate groupby results on the broker nodes.
    4. Better column pruning – In some cases when hive cannot push any operator to druid, hive ended up pulling all the columns from druid. This led to lots of unnecessary data transfer between druid and hive. HIVE-15619 improved the column pruner logic to only fetch the columns from druid which are required to answer a query.

    5. Druid Version upgrade from 0.10.0 to 0.12.2 – HDP 3.0 comes with latest version of Druid i.e 0.12.2 which has many new features, performance enhancements and bug-fixes over the previous version.

Druid is still a specialty technology which doesn’t fit every use case, but if it does fit your use, you’ll get a lot of performance benefit out of it.

Related Posts

Sentiment Analysis with Spark on Qubole

Jonathan Day, et al, have a tutorial on using Qubole to build a sentiment analysis model: This post covers the use of Qubole, Zeppelin, PySpark, and H2O PySparkling to develop a sentiment analysis model capable of providing real-time alerts on customer product reviews. In particular, this model allows users to monitor any natural language text […]

Read More

Running Spark MLlib to Feed Power BI

Brad Llewellyn shows how you can take Spark MLlib results and feed them into Power BI: MLlib is one of the primary extensions of Spark, along with Spark SQL, Spark Streaming and GraphX.  It is a machine learning framework built from the ground up to be massively scalable and operate within Spark.  This makes it […]

Read More


October 2018
« Sep Nov »