Analyzing Day-Over-Day Changes With Power Query

Dany Hoter shows how to use Power Query to join one row to the next in a data set (given similar criteria) and do day-by-day comparisons:

I want to analyze the daily prices of certain commodities and be able to show the patterns of daily changes side by side. I want to calculate predictably the differences between each row and the row before. Each row represents data for a day, so the difference between rows is the daily change or in some cases, several days change.

I downloaded from Quandl 50 years of daily prices of gold and silver, and my goal is to calculate the daily changes in terms of dollars and percentage from day to day. Not all days are represented, so in case of a gap I calculate the number of days in the gap, and I divide the growth % by the number of days. I already imported and appended the data for both metals into a single table in Excel and we’ll start the process from this table.

Read on for the solution.  I’d just as soon LAG() the data in SQL Server, but if that’s not an option, this certainly works.

Related Posts

Storytelling with Power BI: Consistency

Mark Lelijveld continues a series on storytelling with Power BI: In the below report you can easily click on a country on the left side to move to another page. When it comes to interactivity it is all done right! On the right top you can also filter on order date. Let’s say we apply […]

Read More

Blank Rows and DAX

Alberto Ferrari explains how different DAX functions treat blank rows differently: DAX offers two functions to retrieve the list of values of a column: VALUES and DISTINCT. The difference between the two is subtle. To understand it better, we first need to introduce the concept of the blank row. The blank row is a special row added […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031