Combining Apache Kafka With TensorFlow

Kai Waehner has an example of an application which uses Apache Kafka to stream car sensor data to TensorFlow on Google ML Engine:

A great benefit of Confluent MQTT Proxy is simplicity for realizing IoT scenarios without the need for a MQTT Broker. You can forward messages directly from the MQTT devices to Kafka via the MQTT Proxy. This reduces efforts and costs significantly. This is a perfect solution if you “just” want to communicate between Kafka and MQTT devices.

If you want to see the other part of the story (integration with sink applications like Elasticsearch / Grafana), please take a look at the Github project “KSQL for streaming IoT data“. This realizes the integration with ElasticSearch and Grafana via Kafka Connect and the Elastic connector.

Check it out and then take a gander at Kai’s GitHub repo.

Related Posts

Using Convolutional Neural Networks To Recognize Features In Images

Michael Grogan shows how you can use Keras to perform image recognition with a convolutional neural network: VGG16 is a built-in neural network in Keras that is pre-trained for image recognition. Technically, it is possible to gather training and test data independently to build the classifier. However, this would necessitate at least 1,000 images, with […]

Read More

Combining Stream Analytics And Azure ML With Power BI

Brad Llewellyn shows us how to feed Azure ML predictions into Power BI via Azure Stream Analytics: Today, we’re going to talk about combining Stream Analytics with Azure Machine Learning Studio within Power BI.  If you haven’t read the earlier posts in this series, Introduction, Getting Started with R Scripts, Clustering, Time Series Decomposition, Forecasting, Correlations, Custom R Visuals, R Scripts in Query […]

Read More

Categories

August 2018
MTWTFSS
« Jul Sep »
 12345
6789101112
13141516171819
20212223242526
2728293031