Time Series Forecasting With DeepAR

Tim Januschowski, et al, introduce DeepAR on AWS:

Today we are launching Amazon SageMaker DeepAR as the latest built-in algorithm for Amazon SageMaker. DeepAR is a supervised learning algorithm for time series forecasting that uses recurrent neural networks (RNN) to produce both point and probabilistic forecasts. We’re excited to give developers access to this scalable, highly accurate forecasting algorithm that drives mission-critical decisions within Amazon. Just as with other Amazon SageMaker built-in algorithms, the DeepAR algorithm can be used without the need to set up and maintain infrastructure for training and inference.

Click through for a product demonstration.

Related Posts

Anomaly Detection With Python

Robert Sheldon continues his SQL Server Machine Learning Series: As important as these concepts are to working Python and MLS, the purpose in covering them was meant only to provide you with a foundation for doing what’s really important in MLS, that is, using Python (or the R language) to analyze data and present the […]

Read More

Setting Up SparklyR In Azure

David Smith shows how you can spin up a Spark cluster in Azure and install SparklyR on top of it: The SparklyR package from RStudio provides a high-level interface to Spark from R. This means you can create R objects that point to data frames stored in the Spark cluster and apply some familiar R paradigms (like dplyr) […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

Categories

January 2018
MTWTFSS
« Dec  
1234567
891011121314
15161718192021
22232425262728
293031