Beginning With Amazon Athena

Jen Underwood looks at the basics behind Amazon Athena:

Today early adopters of Amazon Athena are using it for big data analytics pipeline projects along with Kinesis streaming data and other Amazon data sources.

Athena is serverless parallel query pay-per-use service. There is no infrastructure to set up or manage. It scales automatically and can handle large datasets or complex distributed queries.

The easy way of thinking about Athena is that it’s ElasticMapReduce (a pay-as-you-go Hadoop cluster) without the ceremony of administering or spinning up the cluster.

Related Posts

Erasure Coding In Hadoop

Guy Shilo explains erasure coding, a new feature in Hadoop 3: The benefits are, of course, space-saving, and for large files also improved performance (blocks striped across datanodes can be read in parallel, and less blocks are written because there is no x3 replication). The larger the file the more notable is the performance gain. […]

Read More

Converting CSV To ORC

Mark Litwintschik investigates whether Spark is faster at converting CSV files to ORC format than Hive or Presto: Spark, Hive and Presto are all very different code bases. Spark is made up of 500K lines of Scala, 110K lines of Java and 40K lines of Python. Presto is made up of 600K lines of Java. […]

Read More

Categories

January 2017
MTWTFSS
« Dec Feb »
 1
2345678
9101112131415
16171819202122
23242526272829
3031