Press "Enter" to skip to content

Category: Streaming

Flink 1.16.1 Release

Martijn Visser announces Apache Flink version 1.16.1:

The Apache Flink Community is pleased to announce the first bug fix release of the Flink 1.16 series.

This release includes 84 bug fixes, vulnerability fixes, and minor improvements for Flink 1.16. Below you will find a list of all bugfixes and improvements (excluding improvements to the build infrastructure and build stability). For a complete list of all changes see: JIRA.

We highly recommend all users upgrade to Flink 1.16.1.

Read on for the release notes, including links to all of the closed tickets.

Comments closed

Flink Table Store 0.3

Jingsong Lee announces a new version of Flink Table Store:

Sometimes users only care about aggregated results. The aggregation merge engine aggregates each value field with the latest data one by one under the same primary key according to the aggregate function.

Each field that is not part of the primary keys must be given an aggregate function, specified by the fields.<field-name>.aggregate-function table property.

Read on for the full changeset.

Comments closed

Capturing Event Hubs Data in Delta Lake Format with Stream Analytics

Xu Jiang announces a public preview:

The Stream Analytics no-code editor is a drag and drop design tool that helps customers to develop the Stream Analytics jobs without writing a single line of code. The experience provides a canvas that allows you to connect to input sources to quickly see your streaming data. Then you can transform and preview it before writing to your destination of choice in Azure. To learn more, see No-code stream processing through Azure Stream Analytics | Microsoft Learn.

Read on to see how you can capture and process data into Delta Lake format via their designer.

Comments closed

Optimizing Async Sinks in Flink

Hong Liang Teoh speeds things up:

When designing a Flink data processing job, one of the key concerns is maximising job throughput. Sink throughput is a crucial factor because it can determine the entire job’s throughput. We generally want the highest possible write rate in the sink without overloading the destination. However, since the factors impacting a destination’s performance are variable over the job’s lifetime, the sink needs to adjust its write rate dynamically. Depending on the sink’s destination, it helps to tune the write rate using a different RateLimitingStrategy.

This post explains how you can optimise sink throughput by configuring a custom RateLimitingStrategy on a connector that builds on the AsyncSinkBase (FLIP-171). In the sections below, we cover the design logic behind the AsyncSinkBase and the RateLimitingStrategy, then we take you through two example implementations of rate limiting strategies, specifically the CongestionControlRateLimitingStrategy and TokenBucketRateLimitingStrategy.

Read on for some tips on creating a rate limiting strategy for a sink.

Comments closed

Motion Detecting and Alerting with Kafka and ksqlDB

Wei Rui and Yinsidi Jiao take us through a scenario:

Managing IoT (Internet of Things) devices and their produced data or events can be a challenge. On one hand, IoT devices usually generate massive amounts of data. On the other hand, IoT hardware has many limitations to process the data generated, such as cost, physical size, efficiency, and availability. You need a back-end system with high scalability and availability to process the growing volume of data. Things become more challenging when dealing with numerous devices and events in real time, and considering the required availability, latency, scalability, and agility for different usage and scenarios.

For Confluent Hackathon 2022, we built an end-to-end motion detection and alerting system, which currently acts as a home surveillance system, on top of Apache Kafka® and ksqlDB to demonstrate how easy it is to build IoT solutions by leveraging Confluent Cloud.

Read on to see how it works.

Comments closed

Apache Flink 1.16 Released

Godfrey He makes an announcement:

To reduce the cost of migrating Hive to Flink, we introduce HiveServer2 Endpoint and Hive Syntax Improvements in this version:

The HiveServer2 Endpoint allows users to interact with SQL Gateway with Hive JDBC/Beeline and migrate with Flink into the Hive ecosystem (DBeaver, Apache Superset, Apache DolphinScheduler, and Apache Zeppelin). When users connect to the HiveServer2 endpoint, the SQL Gateway registers the Hive Catalog, switches to Hive Dialect, and uses batch execution mode to execute jobs. With these steps, users can have the same experience as HiveServer2.

Read on for a pretty large hit list.

Comments closed

Debugging Stream Table Joins

Philip Schmitt dives in to a problem:

Joining two topics to aggregate the data is one of the fundamental operations in stream processing. But that’s not to say that it’s simple. Let me show you what can go wrong! This article chronicles my journey to join two Apache Kafka topics—stumbling into and out of various pitfalls. I‘m going to show you…

– How to debug co-partitioning with kcat (formerly kafkacat)

– How to avoid the number one pitfall of using kcat

– Stream–table join semantics in action

There’s a lot of useful information in this post.

Comments closed

Designing Event Streams for Kafka

Dave Shook announces a new course:

Properly designing your events and event streams is essential for any event-driven architecture. Precisely how you design and implement them will significantly affect not only what you can do today, but what you can do tomorrow. For such a critical part of any data infrastructure, most event streaming tutorials gloss over event design.

In the new course on Confluent Developer, events and event streams are put front and center. We’re going to look at the dimensions of event and event stream design and how to apply them to real-world problems. But dimensions and theory are nothing without best practices, so we are also going to take a look at these to help keep you clear of pitfalls and set you up for success. This course also includes hands-on exercises, during which you will work through use cases related to the different dimensions of event design and event streaming.

Click through to learn more about what’s in the course and to check it out–it is free, after all.

Comments closed

Thoughts on Current 2022

Markos Sfikas, et al, recap the Current 2022 conference:

Throughout the conference, the theme of Batch vs. Streaming was apparent. Discussions covered how they can be unified, how batch processing’s performance can / must be improved for real-time applications, and more. There was even a dedicated panel discussion with Adi Polak, Amy Chen, Eric Sammer and Tyler Akidau discussing the state of streaming adoption today, and debating if streaming will ever fully replace batch. You can view some interesting points from the panel discussion in the Twitter thread from Robin Moffatt.

Click through for the full recap.

Comments closed