Press "Enter" to skip to content

Tips for Kafka Streams Developers

Ludovic Dehon shares some advice:

We built Kestra, an open-source data orchestration and scheduling platform, and we decided to use Kafka as the central datastore to build a scalable architecture. We rely heavily on Kafka Streams for most of our services (the executor and the scheduler) and have made some assumptions on how it handles the workload.

However, Kafka has some restrictions since it is not a database, so we need to deal with the constraints and adapt the code to make it work with Kafka. We will cover topics, such as using the same Kafka topic for source and destination, and creating a custom joiner for Kafka Streams, to ensure high throughput and low latency while adapting to the constraints of Kafka and making it work with Kestra.

Click through for several tips.