Tomaz Kastrun shares his thoughts on the topic of R versus Python:
Imag[in]e I ask you, would you prefer Apple iPhone over Samsung Galaxy, respectively? Or if I would ask you, would you prefer BMW over Audi, respectively? In all the cases, both phones or both cars will get the job done. So will Python or R, R or Python. So instead of asking which one I prefer, ask your self, which one suits my environment better? If your background is more statistics and less programming, take R, if you are more into programming and less into statistics, take Python; in both cases you will have faster time to accomplish results with your preferred language. If you ask me, can I do gradient boosting or ANOVA or MDS in Python or in R, the answer will be yes, you can do both in any of the languages.
This graf hits the crux of my opinion on the topic, but as I’ve gone deeper into the topic over the past year, I think the correct answer is probably “both” for a mature organization and “pick the one which suits you better” for beginners.