Press "Enter" to skip to content

Digital Forensics with Apache Kafka

Kai Waehner continues a series on using Apache Kafka as the backbone for computer security:

Storing data long-term in Kafka is possible since the beginning. Each Kafka topic gets a retention time. Many use cases use a retention time of a few hours or days as the data is only processed and stored in another system (like a database or data warehouse). However, more and more projects use a retention time of a few years or even -1 (= forever) for some Kafka topics (e.g., due to compliance reasons or to store transactional data).

The drawback of using Kafka for forensics is the huge volume of historical data and its related high cost and scalability issues. This gets pretty expensive as Kafka uses regular HDDs or SDDS as the disk storage. Additionally, data rebalancing between brokers (e.g., if a new broker is added to a cluster) takes a long time for huge volumes of data sets. Hence, rebalancing takes hours can impact scalability and reliability.

But there is a solution to these challenges: Tiered Storage.

Click through to learn more.