I take a look at dataset drift monitoring in Azure Machine Learning:
One of the things I like to say about machine learning model is, “shift happens.” By that, I mean that models lose effectiveness over time due to changes in underlying circumstances. Relationships between variables that used to hold no longer do, and so our model quality degrades. This means that we sometimes need to retrain models.
But there’s a cost to retraining models—that work can be computationally expensive and time-consuming. This concern is particularly salient if you’re in a cloud, as you pay directly for everything there. This means that we don’t want to retrain models unless we need to. But when do we know if we should retrain the model? We can watch for model degradation, but there’s another method: drift detection in your datasets.
Read on for a demonstration of how the product works and a couple of things to keep in mind.