Building an Image Classifier with PyTorch

Rogier van der Geer shows how you can use PyTorch to build out a Convolutional Neural Network for image classification:

The tool that we are going to use to make a classifier is called a convolutional neural network, or CNN. You can find a great explanation of what these are right here on wikipedia.

But we are not going to fully train one ourselves: that would take way more time than I would be willing to spend. Instead, we are going to do transfer learning, where we take a pre-trained CNN and replace only the last layer by a layer of our own. Then we only need to train that single layer, as all the other layers already have weights that are quite sensible. Here we exploit the fact that the images we are interested in have a lot of the same properties as those images that the original network was trained on. You can find a great explanation of transfer learning here.

Read on for a detailed example.

Related Posts

MAPE and Its Flaws

Jan Fischer takes us through Mean Absolute Percentage Error as a measure of forecast quality: Particular small actual values bias the MAPE.If any true values are very close to zero, the corresponding absolute percentage errors will be extremely high and therefore bias the informativity of the MAPE (Hyndman & Koehler 2006). The following graph clarifies this […]

Read More

Calculating AUC in R

Andrew Treadway shows how you can calculate Area Under the Curve in R: AUC is an important metric in machine learning for classification. It is often used as a measure of a model’s performance. In effect, AUC is a measure between 0 and 1 of a model’s performance that rank-orders predictions from a model. For […]

Read More

Categories

July 2019
MTWTFSS
« Jun Aug »
1234567
891011121314
15161718192021
22232425262728
293031