Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem:

H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and pysparkling.ml.H2OAutoML. Both APIs use the same underlying algorithm implementations, however, the latter follows the conventions of Apache Spark’s MLlib library and allows you to build machine learning pipelines that include MLlib transformers. We will focus on the latter API in this post.

H2OAutoML supports classification and regression. The ML models built and tuned by H2OAutoML include Random Forests, Gradient Boosting Machines, Deep Neural Nets, Generalized Linear Models, and Stacked Ensembles.

The post only has a few lines of code but there are a lot of working parts under the surface.

Related Posts

Pivoting Spark DataFrames

Unmesha Sreeveni shows how we can pivot a DataFrame in Apache Spark using one line of code: A pivot can be thought of as translating rows into columns while applying one or more aggregations. Lets see how we can achieve the same using the above dataframe. We will pivot the data based on “Item” column. […]

Read More

Troubleshooting Spark Performance

Bikas Saha and Mridul Murlidharan explain some of the basics of performance tuning with Apache Spark: Our objective was to build a system that would provide an intuitive insight into Spark jobs that not just provides visibility but also codifies the best practices and deep experience we have gained after years of debugging and optimizing […]

Read More

Categories

January 2019
MTWTFSS
« Dec Feb »
 123456
78910111213
14151617181920
21222324252627
28293031