Using IO Cache To Speed Up Spark Jobs

Chris Seferlis looks at what the HDInsight team has done to speed up Apache Spark jobs:

The big news here is the recently released preview of HDInsight IO Cache, which is a new transparent data caching feature that provides customers with up to 9X performance improvement for Spark jobs, without an increase in costs.

There are many open source caching products that exist in the ecosystem: Alluxio, Ignite, and RubiX to name a few big ones. The IO Cache is also based on RubiX and what differentiates RubiX from other comparable caching products is its approach of using SSD and eliminating the need for explicit memory management. While other comparable caching products leverage the reservation of operating memory for caching the data.

Read on for more details.

Related Posts

Working with Columns in Spark

Achilleus has a two-parter on working with columns in Spark. Part 1 covers some of the basic syntax and several functions: Also, we can have typed columns which is basically a column with an expression encoder specified for the expected input and return type. scala> val name = $"name".as[String]name: org.apache.spark.sql.TypedColumn[Any,String] = namescala> val name = […]

Read More

Creating Threadpools with ExecutorService in Kafka

Prasanth Nair shows how we can use Java’s ExecutorService to create threadpools for Kafka consumers: Apache Kafka is one of today’s most commonly used event streaming platforms. While using the Kafka platform, quite often, we run into a scenario where we have to process a large number of events/messages that are placed on a broker. […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031