What’s New In Cloudera Enterprise 6.0

Kevin Feasel

2018-10-26

Hadoop

The Cloudera Hive team looks at the introduction of Apache Hive 2.1 into Cloudera Enterprise 6:

We are also focusing on efficiency across our platform. While on-premises platform efficiency helps manage costs in the long run, the immediate benefits of in-cloud deployments are realized by reducing total cost of ownership (TCO). We introduced Hive-on-Spark two years ago to meet  this goal in collaboration with Intel which is our strategic partner. We have a longstanding collaboration with Intel to optimize Cloudera’s stack on Intel architecture for our customers’ benefit.

In Enterprise 6.0, taking our strategic partnership with Intel ahead for further efficiency gains in Hive, we introduce a major performance and efficiency enhancement in HoS called Parquet Vectorization. This feature enables the HoS engine to process a vector of columns instead of one row at a time by batching data rows together into column vectors and making each operator work on such column vectors. This leads to better utilization of CPU caches and achieves high instructions per cycle by efficiently using the CPU instruction pipeline. In addition, we include numerous other performance improvements. For example, Hive often scans a given table multiple times during self joins, self-unions, or shared sub-queries. To address this, Dynamic RDD caching in HoS reuses a single scan across all these operations. Similarly, when the same subquery is used repeatedly, HoS executes this only once instead of separately for each subquery invocation.  Overall, with all these enhancements, in Enterprise 6.0 Hive can be up to 2.2X faster than Hive on the latest Enterprise 5.x release. The majority of these gains can be attributed to Parquet Vectorization for Hive-on-Spark.

This is another case where the Cloudera-Hortonworks merger will get interesting:  Cloudera seemed to hitch its wagon to Impala and Hortonworks to Hive; will they support both as much as they each did independently, or will the new corporate overlords settle on one of the two?

Related Posts

Performance Tuning Neural Network Training

Sean Owen takes us through a few techniques for speeding up neural network model training: Step #2: Use Early StoppingKeras (and other frameworks) have built-in support for stopping when further training appears to be making the model worse. In Keras, it’s the EarlyStopping callback. Using it means passing the validation data to the training process for evaluation […]

Read More

Machine Learning and Delta Lake

Brenner Heintz and Denny Lee walk us through solving data engineering problems with Delta Lake: As a result, companies tend to have a lot of raw, unstructured data that they’ve collected from various sources sitting stagnant in data lakes. Without a way to reliably combine historical data with real-time streaming data, and add structure to […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031