What’s New In Cloudera Enterprise 6.0

Kevin Feasel

2018-10-26

Hadoop

The Cloudera Hive team looks at the introduction of Apache Hive 2.1 into Cloudera Enterprise 6:

We are also focusing on efficiency across our platform. While on-premises platform efficiency helps manage costs in the long run, the immediate benefits of in-cloud deployments are realized by reducing total cost of ownership (TCO). We introduced Hive-on-Spark two years ago to meet  this goal in collaboration with Intel which is our strategic partner. We have a longstanding collaboration with Intel to optimize Cloudera’s stack on Intel architecture for our customers’ benefit.

In Enterprise 6.0, taking our strategic partnership with Intel ahead for further efficiency gains in Hive, we introduce a major performance and efficiency enhancement in HoS called Parquet Vectorization. This feature enables the HoS engine to process a vector of columns instead of one row at a time by batching data rows together into column vectors and making each operator work on such column vectors. This leads to better utilization of CPU caches and achieves high instructions per cycle by efficiently using the CPU instruction pipeline. In addition, we include numerous other performance improvements. For example, Hive often scans a given table multiple times during self joins, self-unions, or shared sub-queries. To address this, Dynamic RDD caching in HoS reuses a single scan across all these operations. Similarly, when the same subquery is used repeatedly, HoS executes this only once instead of separately for each subquery invocation.  Overall, with all these enhancements, in Enterprise 6.0 Hive can be up to 2.2X faster than Hive on the latest Enterprise 5.x release. The majority of these gains can be attributed to Parquet Vectorization for Hive-on-Spark.

This is another case where the Cloudera-Hortonworks merger will get interesting:  Cloudera seemed to hitch its wagon to Impala and Hortonworks to Hive; will they support both as much as they each did independently, or will the new corporate overlords settle on one of the two?

Related Posts

Hyperparameter Tuning with MLflow

Joseph Bradley shows how you can perform hyperparameter tuning of an MLlib model with MLflow: Apache Spark MLlib users often tune hyperparameters using MLlib’s built-in tools CrossValidator and TrainValidationSplit.  These use grid search to try out a user-specified set of hyperparameter values; see the Spark docs on tuning for more info. Databricks Runtime 5.3 and 5.3 ML and above support […]

Read More

TensorFrames: Spark Plus TensorFlow

Adi Polak gives us an introduction to TensorFrames: In all TensorFrames functionality, the DataFrame is sent together with the computations graph. The DataFrame represents the distributed data, meaning in every machine there is a chunk of the data that will go through the graph operations/ transformations. This will happen in every machine with the relevant […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031