We leverage the power of HDP 3.0 from efficient storage (erasure coding), GPU pooling to containerized TensorFlow and Zeppelin to enable this use case. We will the save the details for a different blog (please see the video)- to summarize, as we trained the car on a track, we collected about 30K images with corresponding steering angle data. The training data was stored in a HDP 3.0 cluster and the TensorFlow model was trained using 6 GPU cards and then the model was deployed back on the car. The deep learning use case highlights the combined power of HDP 3.0.
Click through for more additions and demos.