Image Clustering With Keras And R

Shirin Glander shows us how to use R to extract learned features from Keras and cluster those features:

For each of these images, I am running the predict() function of Keras with the VGG16 model. Because I excluded the last layers of the model, this function will not actually return any class predictions as it would normally do; instead we will get the output of the last layer: block5_pool (MaxPooling2D).

These, we can use as learned features (or abstractions) of the images. Running this part of the code takes several minutes, so I save the output to a RData file (because I samples randomly, the classes you see below might not be the same as in the sample_fruits list above).

Read the whole thing.

Related Posts

Combining Plots In R With cowplot

Abdul Majed Raja shows how to use the cowplot library in R to merge together independent plots into a single image: The way it works in cowplot is that, we have assign our individual ggplot-plots as an R object (which is by default of type ggplot). These objects are finally used by cowplot to produce […]

Read More

Classifying Texts With Naive Bayes

I continue my series on Naive Bayes with another hand-calculation post: Step two is, on the surface, pretty tough: how do we figure out if a set of words is a business phrase or a baseball phrase? We could try to think up a set of features. For example, how long is the phrase? How many unique […]

Read More

Categories

October 2018
MTWTFSS
« Sep Nov »
1234567
891011121314
15161718192021
22232425262728
293031