Tips For Creating Population Share Maps

Lisa Charlotte Rost uses election results to give us some tips on building map-based comparisons:

This map shows us that both parties received a higher vote share in the east than in the west. But it also artificially increases the polarisation: If the AfD gets just one more vote than the Linke, the whole district flips from pink to blue. And we would need to create a third category, “tied”, for the nine election districts in which there were exactly as many AfD voters as Linke voters. (The New York Times created that category for their “Extremely Detailed Map of the 2016 Election”.)

There is another option: We could show the percentage point difference between the two shares. To do so, we subtract the AfD votes from the Linke votes. If the result is positive, we show the district in blue. If it’s negative, we show it in pink.

This is a case where there’s not a huge difference between methods, but it can make a big difference in other situations.

Related Posts

Using Plotly In Power BI

Kara Annanie shows how you can R integration in Power BI to push Plotly visuals to users: In the example, above, we’ve created a line chart visualization using Plotly and we’ve decided to put labels on the graph, but only on the first and last points of the line graph. This graph would be particularly […]

Read More

Combining Plots In R With cowplot

Abdul Majed Raja shows how to use the cowplot library in R to merge together independent plots into a single image: The way it works in cowplot is that, we have assign our individual ggplot-plots as an R object (which is by default of type ggplot). These objects are finally used by cowplot to produce […]

Read More


September 2018
« Aug Oct »