Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark:

Time series analysis has two components: time series manipulation and time series modeling.

Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data cleaning and feature engineering. Typical functions in time series manipulation include:

  • Joining: joining two time-series datasets, usually by the time
  • Windowing: feature transformation based on a time window
  • Resampling: changing the frequency of the data
  • Filling in missing values or removing NA rows.

Time series modeling is the process of identifying patterns in time-series data and training models for prediction. It is a complex topic; it includes specific techniques such as ARIMA and autocorrelation, as well as all manner of general machine learning techniques (e.g., linear regression) applied to time series data.

Flint focuses on time series manipulation. In this blog post, we demonstrate Flint functionalities in time series manipulation and how it works with other libraries, e.g., Spark ML, for a simple time series modeling task.

Basho went all-in on a time-series product for Riak and it did not work out well for them.  I’ll be curious to see if Flint has more staying power.

Related Posts

Flink and Stateful Streaming

Himanshu Gupta explains some of the benefits Apache Flink offers for stateful streaming applicatons: The 2 main types of stream processing done are:1. Stateless: Where every event is handled completely independent from the preceding events.2. Stateful: Where a “state” is shared between events and therefore past events can influence the way current events are processed. […]

Read More

Performance Testing Aiven Kafka

Heikki Nousiainen tests the Aiven platform’s Kafka implementation on different cloud providers at different service levels: We used a single topic for our write operations with a partition count set to either 3 or 6, depending on the number of brokers in each test cluster. As the test clusters were regular Aiven services, the partitions […]

Read More


September 2018
« Aug Oct »