Hortonworks Data Analytics Studio

Will Xu and Syed Mahmood announce Hortonworks Data Analytics Studio:

DAS leverages open-source technologies such as Apache Hive to share and extend the value of a modern data architecture in heterogeneous environments. It helps infrastructure administrators manage and optimize the performance of their Hive workloads by delivering visibility into query patterns and storage hotspots. DAS improves performance by uncovering inhibitors to query speed as well as providing recommendations to improve its efficiency.

In the past, Hive view did not provide full auto-complete capability during authoring time. We’ve addressed this shortcoming in DAS. This is not a trivial task especially on large databases, however through a number of caching optimizations we were able to make it work smoothly even with thousands of tables.

This product feels more like Management Studio or SQL Operations Studio than prior Hive UIs.  That’s definitely a good thing.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Categories

September 2018
MTWTFSS
« Aug  
 12
3456789
10111213141516
17181920212223
24252627282930