Building TensorFlow Neural Networks On Spark With Keras

Jules Damji has an example of using the PyCharm IDE to use Keras to build TensorFlow neural network models on the Databricks MLflow library:

Our example in the video is a simple Keras network, modified from Keras Model Examples, that creates a simple multi-layer binary classification model with a couple of hidden and dropout layers and respective activation functions. Binary classification is a common machine learning task applied widely to classify images or text into two classes. For example, an image is a cat or dog; or a tweet is positive or negative in sentiment; and whether mail is spam or not spam.

But the point here is not so much to demonstrate a complex neural network model as to show the ease with which you can develop with Keras and TensorFlow, log an MLflow run, and experiment—all within PyCharm on your laptop.

Click through for the video and explanation of the process.

Related Posts

Flink: Batch as a Special Case of Streaming

Fabian Hueske and Aljoscha Krettek describe streaming versus batch processing in Apache Flink: The Apache Flink project has followed the philosophy of taking a unified approach to batch and stream data processing, building on the core paradigm of “continuous processing of unbounded data streams” for a long time. If you think about it, carrying out […]

Read More

Multi-Tenant Security in Kudu + Impala

Grant Henke shows how you can combine Apache Impala’s fine-grained authorization with Apache Kudu’s coarse-grained authentication for multi-tenant scenarios: Kudu supports coarse-grained authorization of client requests based on the authenticated client Kerberos principal. The two levels of access which can be configured are:1. Superuser – principals authorized as a superuser are able to perform certain administrative […]

Read More

Categories

July 2018
MTWTFSS
« Jun Aug »
 1
2345678
9101112131415
16171819202122
23242526272829
3031