Analyzing Web Server Logs With Spark

Fisseha Berhane uses web server log analysis to contrast three methods of using Spark:

This is the third tutorial on the Spark RDDs Vs DataFrames vs SparkSQL blog post series. The first one is available here. In the first part, we saw how to retrieve, sort and filter data using Spark RDDs, DataFrames and SparkSQL. In the second part (here), we saw how to work with multiple tables in Spark the RDD way, the DataFrame way and with SparkSQL. In this third part of the blog post series, we will perform web server log analysis using real-world text-based production logs. Log data can be used monitoring servers, improving business and customer intelligence, building recommendation systems, fraud detection, and much more. Server log analysis is a good use case for Spark. It’s a very large, common data source and contains a rich set of information.

This tutorial shows you three different ways to solve several problems, including file sizes, counts by response code, top endpoints, etc.

Related Posts

It’s All ETL (Or ELT) In The End

Robin Moffatt notes that ETL (and ELT) doesn’t go away in a streaming world: In the past we used ETL techniques purely within the data-warehousing and analytic space. But, if one considers why and what ETL is doing, it is actually a lot more applicable as a broader concept. Extract: Data is available from a source system Transform: We […]

Read More

Flint: Time Series With Spark

Li Jin and Kevin Rasmussen cover the concepts of Flint, a time-series library built on Apache Spark: Time series analysis has two components: time series manipulation and time series modeling. Time series manipulation is the process of manipulating and transforming data into features for training a model. Time series manipulation is used for tasks like data […]

Read More

Categories

January 2018
MTWTFSS
« Dec Feb »
1234567
891011121314
15161718192021
22232425262728
293031