Performance Tuning A Streaming Application

Mathieu Dumoulin explains how he was able to get 10x performance out of a streaming application built around Kafka, Spark Streaming, and Apache Ignite:

The main issues for these applications were caused by trying to run a development system’s code, tested on AWS instances on a physical, on-premise cluster running on real data. The original developer was never given access to the production cluster or the real data.

Apache Ignite was a huge source of problems, principally because it is such a new project that nobody had any real experience with it and also because it is not a very mature project yet.

I found this article fascinating, particularly because the answer was a lot more than just “throw some more hardware at the problem.”

Related Posts

Testing Kafka Streams Applications

Yeva Byzek continues her series on testing Kafka-based streaming applications: When you create a stream processing application with Kafka’s Streams API, you create a Topologyeither using the StreamsBuilder DSL or the low-level Processor API. Normally, the topology runs with the KafkaStreams class, which connects to a Kafka cluster and begins processing when you call start(). For testing though, connecting to a running […]

Read More

Auto ML With SQL Server 2019 Big Data Clusters

Marco Inchiosa has a model scenario for using Big Data Clusters to scale out a machine learning problem: H2O provides popular open source software for data science and machine learning on big data, including Apache SparkTM integration. It provides two open source python AutoML classes: h2o.automl.H2OAutoML and Both APIs use the same underlying algorithm implementations, […]

Read More


January 2017
« Dec Feb »