Simon Jackson introduces pipelearner, a tool to help with creating machine learning pipelines:

This post will demonstrate some examples of what pipeleaner can currently do. For example, the Figure below plots the results of a model fitted to 10% to 100% (in 10% increments) of training data in 50 cross-validation pairs. Fitting all of these models takes about four lines of code in pipelearner.

Click through for some very interesting examples.

Related Posts

R Data Frames And stringsAsFactors

John Mount recommends setting stringsAsFactors = FALSE for data frames in R: R often uses a concept of factors to re-encode strings. This can be too early and too aggressive. Sometimes a string is just a string. Tibbles have this set by default.  For an explanation as to why it defaults to TRUE for data frames, Roger […]

Read More


John Mount explains the vtreat package that he and Nina Zumel have put together: When attempting predictive modeling with real-world data you quicklyrun into difficulties beyond what is typically emphasized in machine learning coursework: Missing, invalid, or out of range values. Categorical variables with large sets of possible levels. Novel categorical levels discovered during test, cross-validation, or […]

Read More


January 2017
« Dec Feb »