Running Compiled Code In Azure ML

Max Kaznady shows how to use R or Python scripts to call compiled code within Azure ML:

In this post, we focus on sourcing R and Python’s external dependencies, such as R libraries and Python modules, which are not already installed on Azure ML and require code compilation. Commonly the compiled code comes from a variety of other languages such as C, C++ and Fortran. One could also use this approach to wrap their compiled code with R or Python wrappers and run it on Azure ML.

To illustrate the process, we will build two MurmurHash modules from C++ for R and Python using the following two implementations on GitHub, and link them to Azure ML from a zipped folder

Link via David Smith.  I knew it was possible to call compiled C code from Python and R, but didn’t expect to be able to do it within Azure ML, so that’s good to know.

Related Posts

Controlling Azure Services In R With AzureR

Hong Ooi announces a new set of packages called AzureR: As background, some of you may remember the AzureSMR package, which was written a few years back as an R interface to Azure. AzureSMR was very successful and gained a significant number of users, but it was never meant to be maintainable in the long term. As […]

Read More

Azure Databricks Geospatial Analysis

Jose Mendes gives us an example of using Azure Databricks to perform geospatial analysis: Magellan is a distributed execution engine for geospatial analytics on big data. It is implemented on top of Apache Spark and deeply leverages modern database techniques like efficient data layout, code generation and query optimization in order to optimize geospatial queries […]

Read More


July 2016
« Jun Aug »