Fraud Detection With R And Azure

Kevin Feasel

2015-12-28

Cloud, R

David Smith shows us an online fraud detection template:

Detecting fraudulent transactions is a key applucation of statistical modeling, especially in an age of online transactions. R of course has many functions and packages suited to this purpose, including binary classification techniques such as logistic regression.

If you’d like to implement a fraud-detection application, the Cortana Analytics gallery features an Online Fraud Detection Template. This is a step-by step guide to building a web-service which will score transactions by likelihood of fraud, created in five steps

Read through for the five follow-up articles.  This is a fantastic series and I plan to walk through it step by step myself.

Related Posts

Notebooks in Azure Databricks

Brad Llewellyn takes us through Azure Databricks notebooks: Azure Databricks Notebooks support four programming languages, Python, Scala, SQL and R.  However, selecting a language in this drop-down doesn’t limit us to only using that language.  Instead, it makes the default language of the notebook.  Every code block in the notebook is run independently and we […]

Read More

Logging in Azure

Rolf Tesmer has a detailed post covering how and what to log when using Azure for a modern data warehouse: In my view – what often doesn’t get enough attention up front are the critical aspects of monitoring, auditing and availability. Thankfully, these are generally not too difficult to plug-in at any point in the delivery cycle, but as like […]

Read More

Categories

December 2015
MTWTFSS
« Nov Jan »
 123456
78910111213
14151617181920
21222324252627
28293031