Press "Enter" to skip to content

Category: Warehousing

Microsoft Fabric Data Warehouse in a Database Project

Kevin Chant creates a database project:

In this post I want to cover how you can share a Microsoft Fabric Data Warehouse Database Project with the new target platform.

Which is now possible thanks to the latest Azure Data Studio Insiders update. You can view the ‘Add projects support for Fabric DW‘ pull request in the public azuredatastudio GitHub repository.

Kevin takes us through creating the database project in Azure Data Studio and then using Azure DevOps or Azure Data Studio to deploy it back out.

Comments closed

Creating a Function in Snowflake

Kevin Wilkie creates a function:

Sometimes, you’ll need to create functions that do a particular thing. They’re not always pretty. Some of them look like they should have been thrown out with the bathwater.

Unlike SQL Server, user-defined functions in Snowflake can be done in several different languages. They can be done in Java, JavaScript, Python, Scala, or plain-old SQL.

Which means that Postgres users will be a bit more comfortable here than SQL Server users.

Comments closed

Data Type Conversions and Snowflake Performance

Kevin Wilkie is implicit in this whole thing:

One of the ways we can get better at speed is to attempt several slightly different ways that can get you (hopefully) the same data. Some tables work better with one query while some work better with another query.

Let’s work through a scenario in Snowflake and we’ll see which one is faster under “normal” conditions.

Click through for a few query examples and how they end up performing.

Comments closed

Visualizing Snowflake Geospatial Data with Power BI

Rebecca O’Connor builds a map:

Power BI can leverage Geospatial data from snowflake with my favourite map visual – Iconmap – https://www.icon-map.com/ . Icon map can render points, polygons and linestrings using ‘Well Known Text’ format (WKT).

Snowflake supports converting geospatial datatypes to WKT. Not only this, Snowflake has the capabilities to perform the Engineering and analytical needs for Geospatial analysis without using any other tool. And the results can be visualised in a variety of medias such as Tableau, Hex, Carto or even a Custom built Streamlit application. I have written a Streamlit blog on this very recently.

Click through for information on how to get the data shaped in a way that Power BI likes.

Comments closed

The Lakehouse is (Still) Not Enough

Nikola Ilic needs more than a lakehouse:

In the previous parts of the Data Modeling for mere mortals series, we examined traditional approaches to data modeling, with focus on dimensional modeling and Star schema importance for business intelligence scenarios. Now, it’s time to introduce the concept of the modern data platform.

As usual, let’s take a more tool-agnostic approach and learn about some of the key characteristics of the modern data estate. Please, don’t mind if I use some of the latest buzzwords related to this topic, but I promise to reduce their usage as much as possible. 

Lakehouses are getting closer to being good enough, but the performance needs to be there, especially if you eventually have virtual data warehouses sitting on top of lakehouse data to deal with the need for structured fact-dimensional data for reporting tools.

Comments closed

The Basics of Fact-Dimensional Modeling

Nikola Ilic gives us a primer on Kimball-style fact and dimensional modeling:

Before we come up to explain why dimensional modelling is named like that – dimensional, let’s first take a brief tour through some history lessons. In 1996, a man called Ralph Kimball published a book “The Data Warehouse Toolkit”, which is still considered a dimensional modelling “Bible”. In his book, Kimball introduced a completely new approach to modelling data for analytical workloads, the so-called “bottom-up” approach. The focus is on identifying key business processes within the organization and modelling these first, before introducing additional business processes.

This is a really good overview of the topic, though I’m saddened that “dimensional bus matrix” didn’t make the cut of things to discuss. Mostly because I like the name “dimensional bus matrix.”

Comments closed