Press "Enter" to skip to content

Category: Visualization

Fun with Residual Plots

Nina Zumel explains why, when plotting residuals, you always put predictions on the X axis and residuals on the Y axis:

One reason that the proper residual graph (for a well fit model) should smooth out to the line y=0 is known as reversion to mediocrity, or regression to the mean.

Imagine that you have an ideal process that always produces a single value y. You don’t actually observe this “true value”; instead, what you observe is y plus (IID, zero mean) noise. You can build a “model” for this process that predicts the mean of the observations, in this case the value 0.1033149. Then you can calculate the residuals of your “model” in the usual way.

This post went in a direction I wasn’t expecting, and it was all the better for it.

Comments closed

Storytelling with Power BI

Marc Lelijveld wraps up a series on storytelling with Power BI:

Let them ask questions
As a report author, you start building your reports based on the information needs and business requirements you collected before your project. However, every answer to a question, triggers a new question to come up. In the end you end-up with more questions to answer than you thought about up front. Maybe even with scope creep in agile projects.

However, it is very unlikely that you answer all the business information needs in your dashboard or report within one iteration. So why not give them the ability to exploitative interact with the report and ask questions in a native language to their dataset? Power BI has the ability to ask questions to your data in your native language in just a few clicks.

This is probably one of the most underutilized aspects of Power BI.

Comments closed

Getting to Basics with Excel Charts

Alex Velez removes junk from Excel charts:

Custom chart templates aren’t a new feature, but I’m not sure how widely known they are. In a guest post, Bill Dean briefly recommended using these to create a non-standard Excel chart, The Bullet Graph. Another use-case is to create what I call a “clean-slate-template.” This is a chart template that incorporates many best practices and allows you—the creator—to focus on the strategic use of color and words while saving time on formatting.

This is nice because it eliminates the need to click-click-click on every chart, removing the same things over and over.

Comments closed

WVPlots

Nina Zumel announces a new version of WVPlots on CRAN:

WVPlots was originally a catch-all package of ggplot2 visualizations that we at Win-Vector tended to use repeatedly, and wanted to turn into “one-liners.” A consequence of this is that the older visualizations had our preferred color schemes hard-coded in. More recent additions to the package sometimes had palette or color controls, but not in a consistent way. Making color controls more consistent has been a “todo” for a while—one that I’d been putting off. A recent request from user Brice Richard (thanks Brice!) has pushed me to finally make the changes.

Click through to see what’s changed and for an example vignette.

Comments closed

Custom Formatting Numbers in Power BI

Chris Webb shows how you can use custom formats to display numbers more easily in Power BI:

Now that we can apply custom format strings to fields and measures in Power BI in the September 2019 release, I thought it would be useful to provide some examples of what’s possible with this very flexible new feature because the existing documentation for VBA isn’t easy to make sense of. In fact there’s so much to say I’m going to have to write a series of blog posts to cover everything! In this first post I’m going to look at formatting numbers.

When you need an exact number, a thousands separator goes a long way.

Comments closed

Icon Maps in R

Laura Ellis shows how you can build maps full of little icons:

That was ok, but we should try to make the images more aesthetically pleasing using the magick package. We make each image transparent with the image_transparent() function. We can also make the resulting image a specific color with image_colorize().

I then saved the images using the image_write() function. I manually re-uploaded them to GH.

This was a great example of where laying icons on a map works.

Comments closed

Choosing the Right Words on Visuals

Elizabeth Ricks shares an example of where choosing the right words on a visual can make a huge difference:

I presumed the graph would depict cancellation rates for a set of products, with “Tier 2 with Promotion” at the top, representing the highest cancellation rate. When we get to the data, though, that’s not the case. Rather, the graph shows the inverse metric (retention rate) with Tier 2 + Promo as the bottom line with the lowest retention rate. Eventually I figured this out—but only because I spent time studying the data to make this determination! 

Click through for the initial visual as well as a couple of alternatives.

Comments closed

3D Effects in Power BI

David Eldersveld shows how you can use orthographic projection in Power BI:

The projection from three coordinates to a 2D plane is achieved by adding the following two measures. Be sure to adjust the column references and what-if parameter names at the top to correspond to your own data.

Here’s my “Ortho x” measure. The initial six bold values are what you’d need to adjust to your own data and parameter names.

David lays out a face, which is pretty neat.

Comments closed