Spark, Hive and Presto are all very different code bases. Spark is made up of 500K lines of Scala, 110K lines of Java and 40K lines of Python. Presto is made up of 600K lines of Java. Hive is made up of over one million lines of Java and 100K lines of C++ code. Any libraries they share are out-weighted by the unique approaches they’ve taken in the architecture surrounding their SQL parsers, query planners, optimizers, code generators and execution engines when it comes to tabular form conversion.
I recently benchmarked Spark 2.4.0 and Presto 0.214 and found that Spark out-performed Presto when it comes to ORC-based queries. In this post I’m going to examine the ORC writing performance of these two engines plus Hive and see which can convert CSV files into ORC files the fastest.
The results surprised me.
Comments closed