Press "Enter" to skip to content

Category: Spark

Monitoring Kafka Streams with JMX Metrics

Rishi Khandelwal provides a reference architecture for monitoring a Kafka Streams application using JMX Metrics and pushing the results into Graphite:

Service (application) exposes the JMX metrics at some port which will be captured by Jolokia java agent. Then Jolokia exposes those metrics at some port which is easily accessible through a rest endpoint (we call it Jolokia URL). Then we have JMX2Graphte which polls the metrics from Jolokia URL and push it to Graphite. Then Grafana reads the Graphite metrics and creates a beautiful dashboard for us along with the alerts.

So this is the working of the proposed monitoring solution. Now let’s discuss the components of the monitoring solution.

There’s a bit of code/configuration in here as well, so check it out.

Comments closed

Sample Spark-Submit Config Settings

Leela Prasad shares a few sample configuration settings for Spark-Submit jobs:

Before going further let’s discuss on the below parameters which I have given for a Job.
spark.executor.cores=5 
spark.executor.instances=3
spark.executor.memory=20g
spark.driver.memory=5g 
spark.dynamicAllocation.enabled=true 
spark.dynamicAllocation.maxExecutors=10 

Click through to see what these do and why Leela chose these settings. The Spark documentation has the full list of settings but it’s good to hear explanations from practitioners.

Comments closed

Datasets In Spark

Ayush Hooda explains the differences between DataFrames and Datasets in Apache Spark:

The Datasets API provides the benefits of RDDs (strong typing, ability to use powerful lambda functions) with the benefits of Spark SQL’s optimized execution engine. You can define Dataset objects and then manipulate them using functional transformations (map, flatMap, filter, and so on) similar to an RDD. The benefits are that, unlike RDDs, these transformations are now applied on a structured and strongly typed distributed collection that allows Spark to leverage Spark SQL’s execution engine for optimization.

Read on for more details and a few examples of how to operate DataFrames and Datasets.

Comments closed

Improving Spark Auto-Scaling On ElasticMapReduce

Udit Mehrotra explains some of the ways Amazon ElasticMapReduce reduces the pain of node loss in Spark jobs:

The Automatic Scaling feature in Amazon EMR lets customers dynamically scale clusters in and out, based on cluster usage or other job-related metrics. These features help you use resources efficiently, but they can also cause EC2 instances to shut down in the middle of a running job. This could result in the loss of computation and data, which can affect the stability of the job or result in duplicate work through recomputing.

To gracefully shut down nodes without affecting running jobs, Amazon EMR uses Apache Hadoop‘s decommissioning mechanism, which the Amazon EMR team developed and contributed back to the community. This works well for most Hadoop workloads, but not so much for Apache Spark. Spark currently faces various shortcomings while dealing with node loss. This can cause jobs to get stuck trying to recover and recompute lost tasks and data, and in some cases eventually crashing the job. 

Auto-scaling doesn’t always mean scaling up.

Comments closed

SparkSession and its Component Contexts

The folks at Hadoop in Real World explain the difference between SparkSession, SparkContext, SQLContext, and HiveContext:

SQLContext is your gateway to SparkSQL. Here is how you create a SQLContext using the SparkContext.
// sc is an existing SparkContext.
val sqlContext = new org.apache.spark.sql.SQLContext(sc)

Once you have the SQLContext you can start working with DataFrame, DataSet etc.

Knowing the right entry point is important.

Comments closed

Spark RDDs and DataFrames

Ayush Hooda explains the difference between RDDs and DataFrames:

Spark SQL is a Spark module for structured data processing. Unlike the basic Spark RDD API, the interfaces provided by Spark SQL provide Spark with more information about the structure of both the data and the computation being performed. Internally, Spark SQL uses this extra information to perform extra optimizations.

One use of Spark SQL is to execute SQL queries. When running SQL from within another programming language the results will be returned as a Dataset/DataFrame.

Before exploring these APIs, let’s understand the need for these APIs.

I like the piece about RDDs being better at explaining the how than the what.

Comments closed

Selecting a List of Columns from Spark

Unmesha SreeVeni shows us how we can create a list of column names in Scala to pass into a Spark DataFrame’s select function:

Now our example dataframe is ready.
Create a List[String] with column names.
scala> var selectExpr : List[String] = List("Type","Item","Price") selectExpr: List[String] = List(Type, Item, Price)

Now our list of column names is also created.
Lets select these columns from our dataframe.
Use .head and .tail to select the whole values mentioned in the List()

Click through for a demo.

Comments closed

Bayesian Modeling Of Hardware Failure Rates

Sean Owen shows how you can use Bayesian statistical approaches with Spark Streaming, using the example of hard drive failure rates:

This data doesn’t arrive all at once, in reality. It arrives in a stream, and so it’s natural to run these kind of queries continuously. This is simple with Apache Spark’s Structured Streaming, and proceeds almost identically.

Of course, on the first day this streaming analysis is rolled out, it starts from nothing. Even after two quarters of data here, there’s still significant uncertainty about failure rates, because failures are rare.

An organization that’s transitioning this kind of offline data science to an online streaming context probably does have plenty of historical data. This is just the kind of prior belief about failure rates that can be injected as a prior distribution on failure rates!

Bayesian approaches work really well with streaming data if you think of the streams as sampling events used to update your priors to a new posterior distribution.

Comments closed

Spark Streaming Using DStreams Or DataFrames?

Yaroslav Tkachenko contrasts the two methods for operating on data with Spark Streaming:

Spark Streaming went alpha with Spark 0.7.0. It’s based on the idea of discretized streams or DStreams. Each DStream is represented as a sequence of RDDs, so it’s easy to use if you’re coming from low-level RDD-backed batch workloads. DStreams underwent a lot of improvements over that period of time, but there were still various challenges, primarily because it’s a very low-level API.

As a solution to those challenges, Spark Structured Streaming was introduced in Spark 2.0 (and became stable in 2.2) as an extension built on top of Spark SQL. Because of that, it takes advantage of Spark SQL code and memory optimizations. Structured Streaming also gives very powerful abstractions like Dataset/DataFrame APIs as well as SQL. No more dealing with RDD directly!

For me, it’s DataFrames all day. But Yaroslav has a more nuanced answer which is worth reading. There are also a couple of good examples.

Comments closed