CSV Data Ingestion with Spark

Jean Georges Perrin shows how you can easily load CSV data with Spark:

Fortunately for you, Apache Spark offers a variety of options for ingesting those CSV files. Ingesting CSV is easy and schema inference is a powerful feature.
Let’s have a look at more advanced examples with more options that illustrate the complexity of CSV files in the outside world. You’ll first look at the file you’ll ingest, and understand its specifications. You’ll then have a look at the result and finally build the mini-application to achieve the result. This pattern repeats for each format.

It’s good to see some of the lesser-used features pop up like date format and multi-line support (which I hadn’t even known about).

Related Posts

Hooking SQL Server to Kafka

Niels Berglund has an interesting scenario for us: We see how the procedure in Code Snippet 2 takes relevant gameplay details and inserts them into the dbo.tb_GamePlay table. In our scenario, we want to stream the individual gameplay events, but we cannot alter the services which generate the gameplay. We instead decide to generate the event from the database […]

Read More

Notebooks in Azure Databricks

Brad Llewellyn takes us through Azure Databricks notebooks: Azure Databricks Notebooks support four programming languages, Python, Scala, SQL and R.  However, selecting a language in this drop-down doesn’t limit us to only using that language.  Instead, it makes the default language of the notebook.  Every code block in the notebook is run independently and we […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930