Spark Memory Management on EMR

Karunanithi Shanmugam gives us some tips on memory management for Spark in Amazon’s ElasticMapReduce:

Amazon EMR provides high-level information on how it sets the default values for Spark parameters in the release guide. These values are automatically set in the spark-defaults settings based on the core and task instance types in the cluster.

To use all the resources available in a cluster, set the maximizeResourceAllocation parameter to true. This EMR-specific option calculates the maximum compute and memory resources available for an executor on an instance in the core instance group. It then sets these parameters in the spark-defaults settings. Even with this setting, generally the default numbers are low and the application doesn’t use the full strength of the cluster. For example, the default for spark.default.parallelism is only 2 x the number of virtual cores available, though parallelism can be higher for a large cluster.

Spark on YARN can dynamically scale the number of executors used for a Spark application based on the workloads. Using Amazon EMR release version 4.4.0 and later, dynamic allocation is enabled by default (as described in the Spark documentation).

There’s a lot in here, much of which applies to Spark in general and not just EMR.

Related Posts

Running Confluent Platform with .NET

Niels Berglund shows how you can install Confluent Platform as a Docker container and use the .NET client against it: What we see in Figure 16 are the various project related files, including the source file Program.cs. What is missing now is a Kafka client. For .NET there exists a couple of clients, and theoretically, you can use […]

Read More

When Not to Use Spark

Ramandeep Kaur gives us several cases when it makes sense not to use Apache Spark: There can be use cases where Spark would be the inevitable choice. Spark considered being an excellent tool for use cases like ETL of a large amount of a dataset, analyzing a large set of data files, Machine learning, and […]

Read More

Categories

April 2019
MTWTFSS
« Mar May »
1234567
891011121314
15161718192021
22232425262728
2930