Teja Srivastasa has an example of deploying a Jupyter notebook for production use on AWS:
No one can deny how large the online support community for data science is. Today, it’s possible to teach yourself Python and other programming languages in a matter of weeks. And if you’re ever in doubt, there’s a StackOverflow thread or something similar waiting to give you the perfect piece of code to help you.
But when it came to pushing it to production, we found very little documentation online. Most data scientists seem to work on Python notebooks in a silo. They process large volumes of data and analyze it — but within the confines of Jupyter Notebooks. And most of the resources we’ve found while growing as data scientists revolve around Jupyter Notebooks.
Another option might be to use JupyterHub.
Comments closed