Deploying Jupyter Notebooks

Teja Srivastasa has an example of deploying a Jupyter notebook for production use on AWS:

No one can deny how large the online support community for data science is. Today, it’s possible to teach yourself Python and other programming languages in a matter of weeks. And if you’re ever in doubt, there’s a StackOverflow thread or something similar waiting to give you the perfect piece of code to help you.

But when it came to pushing it to production, we found very little documentation online. Most data scientists seem to work on Python notebooks in a silo. They process large volumes of data and analyze it — but within the confines of Jupyter Notebooks. And most of the resources we’ve found while growing as data scientists revolve around Jupyter Notebooks.

Another option might be to use JupyterHub.

Related Posts

Notebooks in Azure Databricks

Brad Llewellyn takes us through Azure Databricks notebooks: Azure Databricks Notebooks support four programming languages, Python, Scala, SQL and R.  However, selecting a language in this drop-down doesn’t limit us to only using that language.  Instead, it makes the default language of the notebook.  Every code block in the notebook is run independently and we […]

Read More

July Azure Data Studio Update

Alan Yu announces some great things in the July update to Azure Data Studio: One of the most requested features from customers around the world is enhanced execution plan support. Although we have basic query plan support in Azure Data Studio, it’s not as robust as similar functionality built into SQL Server Management Studio and […]

Read More

Categories

February 2018
MTWTFSS
« Jan Mar »
 1234
567891011
12131415161718
19202122232425
262728