Press "Enter" to skip to content

Category: Architecture

Trigram Search In SQL Server

Paul White shows how to implement trigram wildcard searches in SQL Server:

The basic idea of a trigram search is quite simple:

  1. Persist three-character substrings (trigrams) of the target data.
  2. Split the search term(s) into trigrams.
  3. Match search trigrams against the stored trigrams (equality search)
  4. Intersect the qualified rows to find strings that match all trigrams
  5. Apply the original search filter to the much-reduced intersection

We will work through an example to see exactly how this all works, and what the trade-offs are.

A must-read.  N-grams in SQL Server is an example of a non-obvious data architecture which performs much better than the obvious alternative, at least when the conditions are right.

Comments closed

How The New York Times Uses Apache Kafka

Boerge Svingen gives us an architectural overview of how the New York Times uses Apache Kafka to link different services together:

These are all sources of what we call published content. This is content that has been written, edited, and that is considered ready for public consumption.

On the other side we have a wide range of services and applications that need access to this published content — there are search engines, personalization services, feed generators, as well as all the different front-end applications, like the website and the native apps. Whenever an asset is published, it should be made available to all these systems with very low latency — this is news, after all — and without data loss.

This article describes a new approach we developed to solving this problem, based on a log-based architecture powered by Apache KafkaTM. We call it the Publishing Pipeline. The focus of the article will be on back-end systems. Specifically, we will cover how Kafka is used for storing all the articles ever published by The New York Times, and how Kafka and the Streams API is used to feed published content in real-time to the various applications and systems that make it available to our readers.  The new architecture is summarized in the diagram below, and we will deep-dive into the architecture in the remainder of this article.

This is a nice write-up of a real-world use case for Kafka.

Comments closed

Lambda And Kappa Architectures

Michael Verrilli has a post contrasting the Lambda and Kappa data architectures:

Any query may get a complete picture by retrieving data from both the batch views and the real-time views. The queries will get the best of both worlds. The batch views may be processed with more complex or expensive rules and may have better data quality and less skew, while the real-time views give you up to the moment access to the latest possible data. As time goes on, real-time data expires and is replaced with data in the batch views.

One additional benefit to this architecture is that you can replay the same incoming data and produce new views in case code or formula changes.

The biggest detraction to this architecture has been the need to maintain two distinct (and possibly complex) systems to generate both batch and speed layers. Luckily with Spark Streaming (abstraction layer) or Talend (Spark Batch and Streaming code generator), this has become far less of an issue… although the operational burden still exists.

I haven’t seen much on the topic of Big Data architectures this year; it seems like it was a much more popular topic last year.

Comments closed

Thoughts On Exactly-Once Processing And First-In First-Out

Kevin Sookocheff looks into Amazon’s Simple Queue Service and explains some concepts of distributed messaging systems in the process:

In an ideal scenario, the five minute window would be a complete non-issue. Unfortunately, if you are relying on SQS’s exactly-once guarantee for critical use cases you will need to account for the possibility of this error and design your application accordingly.

On the message consumer side, FIFO queues do not guarantee exactly once delivery, because in simple fact, exactly once delivery at the transport level is provably impossible. Even if you could ensure exactly-once delivery at the transport level, it probably isn’t what you want anyways — if a subscriber receives a message from the transport, there is still a chance that it can crash before processing it, in which case you definitely want the messaging system to deliver the message again.

Instead, FIFO queues offer exactly-once processing by guaranteeing that once a message has successfully been acknowledged as processed that it won’t be delivered again. To understand more completely how this works, let’s walk through the details of how you go about consuming messages from SQS.

It’s a great read, so check it out.

Comments closed

Isolation Level Basics

Randolph West describes the primary isolation levels in SQL Server:

There are four isolation levels in SQL Server (as quoted from SQL Server Books Online):

  • Read uncommitted (the lowest level where transactions are isolated only enough to ensure that physically corrupt data is not read)
  • Read committed (Database Engine default level)
  • Repeatable read
  • Serializable (the highest level, where transactions are completely isolated from one another)

Read on for a discussion of what these mean, as well as how optimistic versus pessimistic concurrency (in this case, Read Committed Snapshot Isolation versus Read Committed) comes into play.

1 Comment

The Data Lake From 10,000 Feet

Pradeep Menon has a high-level explanation of what a data lake is and how it differs from traditional data warehouses:

With the changes in the data paradigm, a new architectural pattern has emerged. It’s called as the Data Lake Architecture. Like the water in the lake, data in a data lake is in the purest possible form. Like the lake, it caters to need to different people, those who want to fish or those who want to take a boat ride or those who want to get drinking water from it, a data lake architecture caters to multiple personas. It provides data scientists an avenue to explore data and create a hypothesis. It provides an avenue for business users to explore data. It provides an avenue for data analysts to analyze data and find patterns. It provides an avenue for reporting analysts to create reports and present to stakeholders.

The way I compare a data lake to a data warehouse or a mart is like this:

Data Lake stores data in the purest form caters to multiple stakeholders and can also be used to package data in a form that can be consumed by end-users. On the other hand, Data Warehouse is already distilled and packaged for defined purposes.

One way of thinking about this is that data warehouses are great for solving known business questions:  generating 10K reports or other regulatory compliance reporting, building the end-of-month data, and viewing standard KPIs.  By contrast, the data lake is (among other things) for spelunking, trying to answer those one-off questions people seem to have but which the warehouse never seems to have quite the right set of information.

Comments closed

Chaining Exactly-Once Operations With Kafka

Ben Stopford shows how you can use Kafka to chain together services while maintaining exactly-once guarantees:

Any service-based architecture is itself a distributed system, a field renowned for being difficult, particularly when things go wrong. We have thought experiments like The Two Generals Problemand proofs like FLP which highlight that these systems are difficult to work with.

In practice we make compromises. We rely on timeouts. If one service calls another service and gets an error, or no response at all, it retries that call in the knowledge that it will get there in the end.

The problem is that retries can result in duplicate processing—which can cause very real problems. Taking a payment, twice, from someone’s account will lead to an incorrect balance. Adding duplicate tweets to a user’s feed will lead to a poor user experience.  The list goes on.

I just had a discussion at SQL Saturday Albany about this exact thing, and the pain of rolling your own solutions.

Comments closed

Understanding ACID Properties

Randolph West explains the basics of ACID properties and gives a high-level description of how relational databases typically ensure these properties:

Relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL, and PostgreSQL use transactions to allow concurrent users to select, insert, update, and delete data without affecting everyone else.

An RDBMS is considered ACID-compliant if it can guarantee data integrity during transactions under the following conditions:

Read on for more.

Comments closed

Kafka As A Backbone

Ben Stopford explains how to use Kafka as a backbone for a microservices architecture:

Taking a log-structured approach has an interesting side effect. Both reads and writes are sequential operations. This makes them sympathetic to the underlying media, leveraging pre-fetch, the various layers of caching and naturally batching operations together. This makes them efficient. In fact, when you read messages from Kafka, the server doesn’t even import them into the JVM. Data is copied directly from the disk buffer to the network buffer. An opportunity afforded by the simplicity of both the contract and the underlying data structure.

So batched, sequential operations help with overall performance. They also make the system well suited to storing messages longer term. Most traditional message brokers are built using index structures, hash tables or B-trees, used to manage acknowledgements, filter message headers, and remove messages when they have been read. But the downside is that these indexes must be maintained. This comes at a cost. They must be kept in memory to get good performance, limiting retention significantly. But the log is O(1) when either reading or writing messages to a partition, so whether the data is on disk or cached in memory matters far less.

This is a higher-level look and helps explain why I like Kafka so much as a message broker.

Comments closed

Thinking About Databases At Scale

Chris Adkin has a great post explaining some of the hardware and query principles behind scale issues:

All execution plans iterators that require memory grants have two fundamental code paths, one path for when the memory grant is blown and memory spills out into tempdb and one for when the memory grant is correct or under-estimated. Perhaps the database engine team may at some point include a third option, which is for when the grant can be accommodated inside the CPU cache.

As an example, if you run a log record generation intensive workload on the same CPU socket as the log writer, usually socket 0, this will run in a shorter time compared to running the exact same workload in a different socket

This is the type of post where I catch just enough of it to know that I need to dig deeper and learn more.

Comments closed