Lambda And Kappa Architectures

Michael Verrilli has a post contrasting the Lambda and Kappa data architectures:

Any query may get a complete picture by retrieving data from both the batch views and the real-time views. The queries will get the best of both worlds. The batch views may be processed with more complex or expensive rules and may have better data quality and less skew, while the real-time views give you up to the moment access to the latest possible data. As time goes on, real-time data expires and is replaced with data in the batch views.

One additional benefit to this architecture is that you can replay the same incoming data and produce new views in case code or formula changes.

The biggest detraction to this architecture has been the need to maintain two distinct (and possibly complex) systems to generate both batch and speed layers. Luckily with Spark Streaming (abstraction layer) or Talend (Spark Batch and Streaming code generator), this has become far less of an issue… although the operational burden still exists.

I haven’t seen much on the topic of Big Data architectures this year; it seems like it was a much more popular topic last year.

Related Posts

Stream-To-Stream Joins In Spark

Ayush Tiwari shows how to join a pair of streams in Apache Spark 2.3: In Spark 2.3, it added support for stream-stream joins, i.e, we can join two streaming Datasets/DataFrames and in this blog we are going to see how beautifully spark now give support for joining the two streaming dataframes. I this example, I […]

Read More

Spark: DataFrame To RDD For Data Cleansing

Gilad Moscovitch walks us through a common data cleansing problem with Spark data frames: A problem can arise when one of the inner fields of the json,┬áhas undesired non-json values in some of the records. For instance, an inner field might contains HTTP errors, that would be interpreted as a string, rather than as a […]

Read More

Categories

August 2017
MTWTFSS
« Jul Sep »
 123456
78910111213
14151617181920
21222324252627
28293031