Distributed Database Writes

James Serra provides a number of options around distributed writes:

In SQL Server, scaling out reads (i.e. using Active secondary replicas via AlwaysOn Availability Groups) is a lot easier than scaling out writes.  So what are your options when you have a tremendous amount of writes that scaling up will not handle, no matter how big your server is?  There are a number of options that allow you to write to many servers (instead of writing to one master server) that I’ll call distributed writes.  Here are some ideas:

Read on for more options and some additional thoughts around Cosmos DB.  My first inclination would be to put Kafka in front of a distributed write system, but that’s my bias.

Related Posts

A Frugal Stretch Database Alternative

Chris Bell shares a version of Stretch databases for people with budgets: Stretch databases were going to provide “Cost-effective” availability for cold data, and unlike typical cold data storage,  our data would always be online and available to query. Applications would not need to be modified to work with the seamless design of the stretch […]

Read More

Use Cases For Apache Kafka

Amy Boyle shows a few scenarios where New Relic uses Apache Kafka: The Events Pipeline team is responsible for plumbing some of New Relic’s core data streams-specifically, event data. These are fine-grained nuggets of monitoring data that record a single event at a particular moment in time. For example, an event could be an error thrown […]

Read More

Categories

September 2017
MTWTFSS
« Aug Oct »
 123
45678910
11121314151617
18192021222324
252627282930