Thinking About Slowly Degrading Page Performance

Ritesh Maheshwari talks about how LinkedIn deals with performance regressions:

Looking at the chart above, where the dotted red line is a reference point to show where we started the year, notice how site speed improvements tend to be significant and noticeable, as they are optimization-driven. Degradations, however, can generally be of any “amount,” as they happen for various reasons. LinkedIn’s page-serving pipeline has many moving parts. We deploy code multiple times per day, operate a micro-service architecture with hundreds of services, and infrastructure upgrades are frequent. A slowdown in any of these components can cause degradations.

While large degradations can be caught using A/B testingcanary analysis, or anomaly detection, small ones tend to leak to production. Thus, performance of a page has a tendency to always degrade over time.

This led to having the centralized Performance Team focus on identifying these leaks, called “site speed regressions,” and to craft tools and processes to fix them.

It’s an interesting principle.  I could see this principle work for tracking database performance degradation as well.

Related Posts

Using Databricks Delta In Lieu Of Lambda Architecture

Jose Mendes contrasts the Lambda architecture with the Databricks Delta architecture and gives us a quick example of using Databricks Delta: The major problem of the Lambda architecture is that we have to build two separate pipelines, which can be very complex, and, ultimately, difficult to combine the processing of batch and real-time data, however, […]

Read More

An Overview Of Apache Kafka

Leona Zhang has a series going on Apache Kafka.  Part one covers some of the concepts around messaging systems: There is a difference between batch processing applications and stream processing applications. A visible boundary determines the most significant difference between batch processing and stream processing. If it exists, it is called batch processing. For example, […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930