Thinking About Slowly Degrading Page Performance

Ritesh Maheshwari talks about how LinkedIn deals with performance regressions:

Looking at the chart above, where the dotted red line is a reference point to show where we started the year, notice how site speed improvements tend to be significant and noticeable, as they are optimization-driven. Degradations, however, can generally be of any “amount,” as they happen for various reasons. LinkedIn’s page-serving pipeline has many moving parts. We deploy code multiple times per day, operate a micro-service architecture with hundreds of services, and infrastructure upgrades are frequent. A slowdown in any of these components can cause degradations.

While large degradations can be caught using A/B testingcanary analysis, or anomaly detection, small ones tend to leak to production. Thus, performance of a page has a tendency to always degrade over time.

This led to having the centralized Performance Team focus on identifying these leaks, called “site speed regressions,” and to craft tools and processes to fix them.

It’s an interesting principle.  I could see this principle work for tracking database performance degradation as well.

Related Posts

Using Kubernetes To Support Microservices

Samir Behara walks us through a high-level explanation of how you can use Kubernetes to support development of microservices: Kubernetes is an open source container-orchestration system for automating deployments, scaling and management of containerized applications. In this tutorial, you will learn how to get started with Microservices on Kubernetes. I will cover the below topics […]

Read More

Integrating Kafka Into A Data Scientist’s Workflow

Liz Bennett from Stitch Fix has a guest post on the Confluent blog: Our main requirement for this new project was to build infrastructure that would be 100 percent self-service for our Data Scientists. In other words, my teammates and I would never be directly involved in the discovery, creation, configuration and management of the event […]

Read More

Categories

November 2017
MTWTFSS
« Oct Dec »
 12345
6789101112
13141516171819
20212223242526
27282930