Press "Enter" to skip to content

Using Haskell for Data Science

Jonathan Carroll has my attention:

I’ve been learning Haskell for a few years now and I am really liking a lot of the features, not least the strong typing and functional approach. I thought it was lacking some of the things I missed from R until I found the dataHaskell (www.datahaskell.org) project.

There have been several attempts recently to enhance R with some strong types, e.g.  vapour (vapour.run), typr (github.com), using {rlang}’s checks (josiahparry.com), and even discussions about implementations at the core level e.g.  in September 2025 (stat.ethz.ch) continued in November 2025 (stat.ethz.ch). While these try to bend R towards types, perhaps an all-in solution makes more sense.

In this post I’ll demonstrate some of the features and explain why I think it makes for a good (great?) data science language.

I’ve been a big fan of F# for data science work as well for similar reasons, so it was interesting to read this article on Haskell. H/T R-Bloggers.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.